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Nonlinear surface heating of a plane sample and modes of current transfer to hot arc cathodes
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A hypothesis is suggested that nonuniqueness of multidimensional thermal balance of a finite sample heated
by a nonlinear external energy flux may be a reason for the existence of multiple modes of current transfer to
hot arc cathodes. In order to check this hypothesis, bifurcation analysis has been carried out of the equation of
heat conduction in the body of a thermionic cathode supplemented with a boundary condition describing
heating by the adjacent plasma. Multiple solutions have been found, one of them describing a diffuse mode and
others describing various spot modes. Solutions describing spot modes have been calculated in the vicinity of
bifurcation points and analyzed qualitatively outside this vicinity. Qualitative conclusions concerning a tran-
sition between the diffuse discharge and the first spot mode conform to available experimental information.
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PACS numbgs): 52.40.Hf, 52.80.Mg

[. INTRODUCTION recent work. The question of multiple modes of current
transfer to hot arc cathodes is of crucial importance, in par-
The problem of multidimensional steady-state temperaticular, for high-pressure discharge lanj@s. Note that dif-
ture distributions created in a plane sample by a nonlineafuse and spot modes occur also at arc andses, e.g.[8—
external heating was formulated and analyzedlhas a 10]); however, the question of anodes is beyond the scope of
mathematical example exhibiting characteristic features othe present work.
constricted current transfer from a plasma to an electrode. It In [7], equations describing the near-cathode plasma were
was found that the problem has, under certain conditionssolved jointly with an equation of electron emission from the
multiple solutions, which have been associated with differentathode surface. Two solutions have been found for each
modes of current transfer to an electrode. The approachurface temperature and near-cathode voltage drop, one of
based on the bifurcation theory was used. It was shown thahem with low values of the current density and the electric
the bifurcation analysis provides valuable qualitative infor-field at the cathode surface and another with high values. The
mation on modes with current constriction, as well as ancathode operates via Schottky-amplified thermionic emission
initial approximation for numerical calculations. [&], the in the framework of the first solution and via thermofield or
bifurcation analysis has been employed in order to study théeld emission in the framework of the second solution. The
effect of normal current density on cold glow cathodes. Infirst solution has been identified with the diffuse mode and
[3], the theory originally developed ifL] was recast, for a the second one with the spot mode.
two-dimensional case, into a somewhat different form; a par- Similar physics has been discussed 11]: The cathode
ticular case of the step-function dependence of the externaperates via Schottky-amplified thermionic emission in one
heat flux on the surface temperature was considered. mode and in a regime close to pure field emission in another
Solutions found in[1] reveal some features typical for mode. The ion current makes up a reasonable fraction of the
near-electrode current constriction in general, such as thetal current in the first mode and is negligible in the second
effect of normal current density, which is observed on coldmode, which resembles the concept of the diffuse and spot
cathodes in glow discharges. On the other hand, a problem ofiodes developed in the early wdrk2].
a high technological interest exists in which the model of Note, however, that an adequate theoretical description of
nonlinear external heating of a plane sample may not onlynultiple modes of current transfer to a hot arc cathode does
represent a mathematical example, but also be physically adtot necessarily involve essentially different physical mecha-
equate: This is the problem of multiple modes of currentnisms. This is rather a mathematical question of finding
transfer to hot arc cathodes. The essence of the problem is asnunique solutions: An adequate theoretical model of cur-
follows: current transfer to hot arc cathodes may occur in aent transfer to hot arc cathodes must in some cases allow
spot mode, when nearly all the current is localized in a redifferent steady-state solutions to exist for the same condi-
gion occupying only a small fraction of the cathode surfacetions, which describe different modes of current transfer.
(the spoy, and in a diffuse mode, when the current is distrib- A simple theoretical model of current transfer to hot arc
uted over the front surface of the cathode in a more or lessathodegsee, e.g.[5] and references thergiis based on the
uniform way. A transition between the diffuse and spotequation of heat conduction in the cathode body supple-
modes is accompanied by hystere@se, e.g.[4]), i.e., a mented with a boundary conditiondT/dn=q(T,U) at the
current range exists in which both a diffuse mode and a spaturrent-collecting surface, whereis the thermal conductiv-
mode may occur, depending on the prehistory. Description#y of the substance of the cathodkis the temperature is
of experimental observations of multiple modes of currenta direction locally orthogonal to the surface and directed out-
transfer to hot cathodes in high-pressure arcs can be foundide the cathodey(T,U) is the density of the heat flux from
e.g., in[5]; we mention also Ref[6] as an example of a the plasma to the surface, ahdis the near-cathode voltage
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drop that is assumed to be the same for all points of the
current-collecting surface and should be chosen in such a COOLING
way that the integral current to the cathode surface take a T=T.
prescribed value. The functiop=q(T,U) is calculated by
means of analysis of a plasma layer adjacent to the cathode
surface and is considered as known while treating the prob-
lem of heat conduction in the cathode body. According to the z
above, an adequate theoretical description of multiple modes
of current transfer to hot arc cathodes amounts to finding
nonunique solutions of this problem, i.e., to finding different ¢’ T T ’
temperature distributions inside the cathode and on its sur-
face that may occur for the same conditions. It should be
expe(_:ted that one of these dlgtrlbutlons will correspond to ENERGY FLUX, g=¢(T,J)
the diffuse mode and others will correspond to spot modes.

It is of interest to consider from this point of view the FIG. 1. Geometry of the problem.
above-mentioned work$7,11]. It follows from [7] that
plasma states in front of the cathode with a given temperative study of multiple modes of current transfer to thermionic
ture of the surface and a given voltage drop across the neatathodes described by these solutions. This task is attempted
cathode region may be nonunique. Hence the functiorin the present work with the use of a model of a plasma layer
g(T,U) may be multivalued. This may be a reason for nonu-at a thermionic cathode described [itd]. Analysis of the
nigueness of temperature distributions in the cathode, i.epossibility of multiple modes due to the multivalued charac-
one may think of solutions with different branches of theter of the functionq(T,U) caused by the multiplicity of
function q(T,U). However, the question of whether these plasma states for given cathode surface temperature and
nonunique solutions describe spot modes requires a multidnear-cathode voltage drop is left beyond the scope of the
mensional solution of the heat conduction equation in theresent worksee a remark in Sec. IV A in this regard
cathode body, which has not been attemptefi7inIn [11], A mathematical statement of the problem is given in Sec.
the heat conduction equation in the cathode body has bedh General properties of solutions are discussed in Sec. lll.
solved numerically in the approximation of axial symmetry.In Sec. IV calculations are presented and discussed for con-
However, no multiple solutions have been presented. Alitions of thermionic cathodes. Concluding remarks are
guestion remains open whether the solutjdd] describes given in Sec. V.
one mode that changes its appearance with a change of con-

ditions or the solution under changing conditions passes Il. MODEL
through a bifurcation point in which it continuously switches ) o )
from one mode to another. The model to be considered is illustrated by Fig. 1 and

With regard to multiple solutions to the above-describedépresents the above-mentioned model describe8]irap-
problem, the work{13] should be referred to in which the plied to a particular case when a cathode is in the form of a
heat conduction equation in a cylindrical thermionic cathoddight cylinder whose cross section is not necessarily circular,
was So|ved numerica”y in the approximation Of axia' Sym_W|th the bottom surface being current CO”eCting, the lateral
metry. A unique solution has been found for a cathode ge(inactive) surface being thermally insulated, and the top be-
ometry modeling experimental conditions; however two sodNg maintained at a fixed temperatufg by external cooling.
lutions have been found in a certain current range for a widdoule heat production inside the cathode body is neglected.
Cathode(of a diameter equa| to its heighbne of them with The denSityq of the heat flux to the CUrrent-CO”eCting sur-
a relatively uniform temperature distribution over the cath-face is considered as a given function of the local surface
ode surfacdthe diffuse modeand another with a high tem- temperatureT and of the voltage drop across the near-
perature in the center of the cathode and a relatively colgathode layerU, which is constant along the current-
periphery(the spot mode A reason for existence of multiple collecting surfaceq=q(T,U). A steady-state temperature
solutions was not discussed. distribution within the cathode body is described by the non-

Summarizing the above, one can say that a possible rednear boundary-value problem
son for the multiplicity of modes of current transfer to hot 2
arc cathodes found in the literature is a multivalued character V=0, @
of the functionq(T,U). On the other hand, the mathematical
treatment[1] indicates that another reason is possible: A a_lﬁ:_q(,p U) for z=0
multidimensional thermal balance of a finite sample heated 9z ’ '
by a nonlinear external energy flux may be non-unique. In
other words, the equation of heat transfer in the cathode body =0 for z=h, 2
may have multiple solutions if considered in more than one
dimension even if the functiog(T,U) is single valued. Iy

It is of considerable interest in such a situation to apply %_0 for I"
the approach1] to the conditions of a thermionic cathode
with the aim of solving the question of nonunigueness of itsHere thez axis is directed along the axis of the cylinder from
thermal balance and, if multiple solutions exist, of a qualita-the bottom inside the bulk of the cylinddr,is the height of
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the cylinder,I" designates the lateral surfaceis a direction B Z
orthogonal to the lateral surface in a point considered, and y=\1- h Y )
the functiong= (T) is the heat flux potential related to the
temperature by the equation where ,,= ¢,,(U) is a root of the transcendental equation
P
T -—= V). )
lp(T):f k(T)dT. (3 p At

Cc

The temperature at all points of the cathode surface is the

. . same(and equal taj,), hence this solution describes a dif-
For brevity, ¢ will be referred to as the temperature. It fuse mode of current transfer to the cathode

should be emphasized that if the density of the energy flux | o4 5 calculate the slope of the current-voltage charac-

from the plasma is known as a functionBfandU), then it o iqhic () described by the 1D solution. Differentiating

can be determined as a function ¢f hence the function Eq. (5) with respect toU and resolving the obtained edua-
g(¢,U) on the right-hand side of the boundary condition attic?ﬁ(o)n\(,awfinds P ving I au

z=0 will be treated as given.

After the problem(1) and(2) has been solved for a given aq
U and a distribution of the temperature over the bottom sur- i (U) hm
face of the cathode has been found, one can determine a LA _ (6)
distribution of densityj of the electric current coming to the du hﬁ_q_ 1
cathode surface from the plasma, corresponding td.thidt Y

is implied that a dependence jobn the local temperature of o o )
the cathode surface and on the voltage drop in the near- The derivative of the functiof[ ¢, (U),U] is
cathode layer is known; this dependence is determined b . . .
means of a)r/1alysis of the plasma IF;yer adjacent to the cathoc}/e djl¥w(V), U] _ ) dyw(V) = dj 0
surface and is calculated simultaneously with the function du gy duU aJ’
g(¢,U).] The integral current also may be determined.
Finding a solution for varioudJ, one can determine the
current-voltage characteristig(l).

Before specifying particular forms of functiorg ¢r,U)
andj(¢,U) (Sec. IV), we consider in Sec. lll properties of

Substituting ford¢,,(U)/dU Eq. (6), one obtains the follow-
ing expression for the slope of the current-voltage character-
istic U(j) described by the 1D solution:

. . : aq
solutions of the considered problem for functions of a gen- h——1
eral form. Certain conclusions that will be made in Sec. Il d_U: _ ad ®)
depend on the signs of derivatives of these functions. There- dj aq dj dq 9] dj
fore, we discuss here briefly the signs to be expected for U ay dp U] gu

functions of physical interest.

If the voltage applied to the near-cathode layer increasemtroducing the derivativedq/dy); taken at constant current
while the temperature of the cathode surface remains cordensity, one can rewrite E¢8) as
stant, the density of the electric current coming to the cath-

ode increases. The powgd deposited in the near-cathode hﬁ_q 1
layer also increases, which results in an increase of the en- du o
ergy flux to the cathode. Therefore, derivativgjgdU and FE T RE 9
. . J | J0q
dq/dU will be assumed to be positive. — 1—h(—>
An increase of the temperature of the cathode surface im- ‘?U[ I j
proves conditions for current transfer, therefore the deriva- = | )
tive 9j/ 94 will be assumed to be positive. The rate of energyMultiplying Egs. (6) and (9), one finds
losses from the cathode surface increases. However, the P
power deposited in the near-cathode layer at constant voltage h_q
increases as well, hence no conclusion on the sign of the dipy U (10)
derivative9q/ g can be drawn. dj  4dj aq\ |
If the temperature of the cathode surface increases at con- U 1- h(w) }
j

stant current density rather than at constant voltage, improve-
ment of conditions of current transfer result; in a_decrease of According to what has been said at the end of Sec. I,
U and, consequently, of the power deposited in the neal
cathode layer. Thus the derivativeq/ 7¢); taken at constant
current density may be assumed to be negative.

rderivativesaj/au anddq/dU are positive while §q/dy); is
negative. It follows that the denominator of the right-hand
side of Eq.(9) is positive. Hence the current-voltage charac-
teristic of the diffuse discharge has extrema at points at
which h(dg/dy)[ ¥,,(U),U]=1, is growing at points at
which h(dqg/dy)[ ¥, (U),U]<1, and is falling at points at
The problem(1) and (2) may have a one-dimensional which h(dq/d¥)[ ¥, (U),U]>1. The right-hand side of Eqg.
(1D) solution = ¢s(z) of the form (10) is positive. Hence the temperature of the cathode surface

Ill. GENERAL PROPERTIES OF SOLUTIONS
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in the diffuse mode monotonically increases with an increase F

of current, without regard to whethé&# is growing or de-
creasing.

The second derivative of the current-voltage characteristic .

in an extreme point can be found to be

d
, h2 o )
d-u ou 97q
- iy (11)

diz 8_1')2 - (ﬂ_Q) 2 oy?
(au 1 haz,/;j

It follows that an extremum of the current-voltage character- ,

istic of the diffuse discharge is a maximum if2%Q/
0 [(U),U]>0 and a minimum if ¢%q/
9y [¢a(V),U]<0.

In addition to the 1D solution, the problem may have

multidimensional solutionsy= (x,y,z) that branch off
from (or join) the 1D solution. Bifurcation points in which

o) |

FIG. 2. Prototypical current-voltage characteristics. Solid line,

branching or joining occur and solutions in the vicinity of diffuse mode; dashed lines, spot modesindE, extreme points of
these points may be found by means of a bifurcation theoryhe current-voltage characteristic of the diffuse moBeand B’,
given in the Appendix. In particular, a procedure of determi-bifurcation points associated with the first positive eigenvéalueC
nation of the bifurcation points is as follows. Suppose tha@ndC’, bifurcation points associated witty; D andD’, bifurca-

the 1D solution has been determined, i.e., E).has been
solved for all U of interest and

the dependence

tion points associated witkg.

= ,(U) calculated. After that, one should solve at eachequivalenty, abovethe current-voltage characteristic of the

U the equation
Jq
gyl ¥w(U),U]=kcothkh, (12

thus determining a wave numbkrof steady-state perturba-
tions that can branch off at the value W@fconsidered[Note

diffuse discharge if the quantity

] Jj o*q

ﬁ—d/z—cl 9 g (14

evaluated at the bifurcation point is positijélere and be-

that the functiork(U) does not depend on the cross sectionlow C, is a (positive) coefficient defined by E%Aﬂ) or,
of the cathodd.After that, values ofJ should be identified at €quivalenty, by the equatio@,=(hdg/dy—1)" "] If the

which the wave numbek(U) takes the valuek;, k,,
Ks, ..

guantity(14) is negative, the current-voltage characteristic of

. determined by the spectrum of the Neumann prob@ multidimensional solution branches off into the region to

lem (A9) for the two-dimensional Helmholtz equation con- the left of (below) the current-voltage characteristic of the
sidered in the cross section of the cathode. Just these will géffuse discharge.

the bifurcation points for a given cross section.
Sincexcothx>1 for realx, a necessary condition for Eq.
(12) to have a real root is

Jq
ey L(U),U1> 1 (13)

It follows from the above that this inequality is fulfilled on
falling sections of a current-voltage characteridti¢l) of

In the vicinity of an extreme point of the current-voltage
characteristic of the diffuse discharge, the quan@y is
large and the second term of expressi@4) is dominating.
According to what has been said at the end of Sec. I, the
derivativedj/di is positive. Taking into account the conclu-
sion on the sign of the derivativé’q/dy? in an extreme
point drawn above, one can deduce that if a multidimen-
sional solution branches off in the vicinity of the point of
minimum or maximum, then the characteristic described by

the diffuse discharge. Thus, branching of multidimensionathis solution branches off into the region above or, respec-

solutions from(as well as joining tp a 1D solution may

occur only on a falling section of the current-voltage charac-

tively, below the characteristic of the diffuse discharge.
We consider as a prototypical current-voltage characteris-

teristic described by the 1D solution. Note that previouslytic of a diffuse discharge the one depicted in Fig. 2, which

this conclusion has been derivégdl] for the special case

contains two sections of growtsectionsdOA andEF) sepa-

when the current density is related to the heat flux density byated by a falling sectionXE). The quantityh g/ on the

the formulaq(T,U)=U j(T,U) +const.

sectionAE first grows from unity to a maximum value and

Formulas describing the asymptotic behavior of multidi-then decreases back to unity. The wave number, being re-
mensional solutions in the vicinity of bifurcation points are lated todq/dy by Eq. (12), on the sectiorAE first grows
given in the Appendix. Also given are formulas describingfrom zero to a maximum valule,,,, and then decreases back
current-voltage characteristics of multidimensional solutiondo zero. Obviously, each value &fbelow K5 IS encoun-

in the vicinity of bifurcation points. It follows from Eqg.

tered two times on the sectiokE. In such a case, two bi-

(A22) that the current-voltage characteristic of a multidimen-furcation points are associated with each positive eigenvalue

sional solution branches off into the region to the rightar

Ki <Kmax-
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It is natural to suppose that a multidimensional solution 0.8 5 2 / S
that branches off at one of these two points joins at the other q (107 W/m") ’
one, as is shown by dashed lines in Fig. 2. This hypothesis
was confirmed by numerical calculatiofs. 0.6 4
If the height of the cylinder is not too large compared to Vs 1 L
its transversal dimensions, then bifurcation points associated 4 .
with the first positive eigenvaluk, are positioned not far ya %
away from extrema of the current-voltage characteristic of 0.4 - L
the diffuse discharge. According to the above, characteristic J/
BB’ in such a situation branches off at the pdifrom the T 4 g2
characteristic of the diffuse discharge above and rejoins the
characteristic of the diffuse discharge at the pd@ntfrom 0 .’ ' g
below, as is shown in Fig. 2. i
The behavior of multidimensional solutions in a special e !
case when the height of the cylinder is much smaller than its .0 I T 1 : | '
transversal dimensions is described by analyss. Bifur- 0 i 5 3 "'24‘"3
cation points associated with eigenvalues with finite numbers v, (10° W/m)
are positioned in the vicinity of extrema of the current-
voltage characteristic of the diffuse discharge. A schematic FIG. 3. Graphic illustration of the 1D heat balance of a tungsten
of the current-voltage characteristic for this case is reprecathode of a height of 10 mm in the atmospheric-pressure argon
sented by the dashed lil8B’ in Fig. 2. The current-voltage Plasma. 1-3, the functiom=q(¢,,U) for U=12, 11.13, and
characteristic reveals a plateau, i.e., the effect of normal culO V. respectively; 4q=4,/h; 5, the dependence,,(¢,) for
rent density takes place in this case. The normal voltage ~ tungsten.

i.e., a value of the near-cathode voltage that corresponds {0 . . N
the plateau, is determined by the condition aving appeared due to the inapplicability of the mddd|
' at electron temperatures that high.

¥ 1 The mechanism of electron emission in the mddd] is
f a(¢,Uy,) dy= ﬁ(lﬂg— ), (15  Schottky-amplified thermionic emission. Secondary electron
¢! emission(the y process is neglected, which is a usual ap-
roximation of the theory of thermionic cathodes; see, e.g.,
he discussion in5]. Hence the results of the present work
gecome inapplicable in the case of a cold cathode with a

: . L . near-cathode voltage of the order of several hundred volts,
equation may be derived by means of writing Ef).in the when a contribution of the secondary electron emission to

vicinity of the boundary of the spot in two dimensiongs, S .
, . the total electron emission current becomes significant.
where\ is the along-surface coordinate normal to the bound-

ary, and then either by transforming this equation to an inte-
gral equatior{ 3] or by multiplying it by a derivativedys/ on

e

where ¢, and 3 are values of the surface temperature tha
occur atU =U,, on the section® A andEF, respectively, of
the current-voltage characteristic of a diffuse discharge. Thi

B. Diffuse mode

and integrating il andz[15]. One needs to solve EEp) in order to find a 1D solution
associated with the diffuse mode of current transfer. As an
IV. MODELING OF CURRENT TRANSFER example, graphs of the right-hand side of E%).for a tung-
TO HOT ARC CATHODES sten cathode in the atmospheric-pressure argon plasma for
) three values of the voltage drop in the near-cathode layer are
A. Function g=q(T,U) shown in Fig. 3 by curves 1-3. The straight line represents

A plasma layer adjacent to the cathode surface should bée left-hand side of Eq(5) for a cathode of a height of
calculated in order to find the density of the energy flux from10 mm. For convenience, the relationship between the tem-
the plasma to the surfacg=q(T,U). A model[14] of a  perature and the heat flux potential of tungsten is also shown.
plasma layer at a thermionic cathode was used in the present One can see that #=11.13 V, Eq.(5) has two positive
work. Calculations presented below were carried out for arfoots(designated bys, and3). As U decreases, the smaller
gon and mercury plasmas. The parameteppearing in the root ¢, increases and the bigger ortg decreases. The roots
model[14] was calculated in terms of the ionization coeffi- merge atU approximately equal to 11.13 V. No positive
cient given in[16] and the diffusion coefficient of ions in the roots exist ifU=<11.13 V.
atom gas was calculated by means of cross secfibnd 6 The voltage drop in the near-cathode layer and the tem-
for the argon and mercury plasmas, respectively. perature of the cathode surface as functions of the current

The calculation of the near-cathode plasma layer is redensity for a tungsten cathode of height 10 mm in the
duced to solving a transcendental equation for the electroatmospheric-pressure argon plasma are represented in Fig. 4.
temperature in the framework of the mod@¥4]. Two roots  The roots¢, and 3 are associated with the falling and
of this equation have been detected in some cases, a bigggtowing sectionsAE and EF, respectively, of the curve
root being of the order of POK. We discarded this root, U(j).
thus leaving beyond the scope of the present work the ques- It is of interest to discuss a connection between curve 1
tion of whether this root corresponds to a physically possibleepresenting the dependeridé¢j) in Fig. 4 and the solid line
state of the near-cathode plasma or it is physically irrelevantepresenting the current-voltage characteristic of the diffuse
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—5 C. Normal voltage

n

One needs to solve E@15) in order to find the normal
voltage. Since the sectid@A of the current-voltage charac-
teristic of the diffuse discharge in Fig. 2 coincides with the
axis of voltages in the conditions of a thermionic cathode,
one should sej; =0 in Eq.(15) while treating a thermionic
cathode. A geometrical sense of this equation may be illus-
trated as follows: If one considers a half stf<iy,,
<3, q=0} in the plane ¢, ,q) (Fig. 3), then areas of the
------------- - Tk, half strip under the curveg=q(#,,,U,) and under the
4 DNXK----------f--- ko straight lineq= ¢, /h are equal. This equation may be inter-

preted as a condition of the coexistence of phases, one phase
K, being a normal spot and another being a surrounding
discharge-free region, and may be called Maxwell's con-
i (Aim?) struction for a normal spot on a thermionic cathode.
LEELLL B L L Calculations for a tungsten cathode of the height of

107 108 10° i i i
10 mm in the atmospheric-pressure argon plasma giye

8 T IIIIIIIII

FIG. 4. Voltage drop in the near-cathode layer, temperature of 13.56 V.
the cathode surface, and wave number for the diffuse discharge on . . ‘
a tungsten cathode of a height of 10 mm in the atmospheric- D. Bifurcation analysis

pressure argon plasma. 1, the voltage drop; 2, the temperature of the The procedure of finding bifurcation points is described in
cathode surface; 3, the wave numbBy; C, andD, bifurcation  geq 1~ Al bifurcation points are positioned on the falling
points associated with the e_lgenvalu@s ke, and.k3’ resDept'Vely’ sectionAE of the current-voltage characteristic of a diffuse
for the case of a cathode in the form of a circular cylinder of a . oo S
radius of 2 mm;E, the point of minimum of the voltage drop. dlsc':harge on a.thermlo.mc C‘f"tho.de shown in Fig. 4, as they
do in the situation depicted in Fig. 2. Before proceeding to
the results of calculations, we consider a question of whether
discharge in Fig. 2. Note that E5), apart from positive the bifurcation points should be expected to exist in pairs in
roots, has also a trivial roaf,,=0 that exists for alU. This  the case of a thermionic cathode, as they do in the situation
root corresponds to the situation in which no current flows tadepicted in Fig. 2.
the cathodej=0. Thus a current-voltage characteristic on  The reasoning of Sec. Il that leads to the conclusion that
the whole includes not only the branch represented in Fig. #ifurcation points exist in pairs under the conditions of Fig. 2
by the curve 1, but also a branch coinciding with the axis ofis based on the fact that the current-voltage characteristic in
voltages. While the first branch exists for exceeding ap- Fig. 2 has two extreme pointa maximum and a minimum
proximately 11.13 V(the power supply is insufficient to in contrast to the current-voltage characteristic of a diffuse
heat up the whole surface of the cathode at lower voltagesdischarge on a thermionic cathode, which has only a mini-
the second branch exists for all voltages. mum point. However, the presence of two extreme points on
One can see that the current-voltage characteristic of & current-voltage characteristic of a diffuse discharge is not a
diffuse discharge on a thermionic cathode is of the type debecessary condition for bifurcation points to exist in pairs,
picted in Fig. 2, however, with an important difference: TheWhich can be seen from the following mathematical ex-
sectionOA coincides with the axis of voltages and the point@mple. Consider a case when the functirig,U) is similar
A is at infinity in the conditions of a thermionic cathode. t0 that shown in Fig. 3, while its asymptotic expansion at
Obviously, this difference results from the fact that the func-¢—0 is
tion q(T,,,U) in the model of a thermionic cathode tends to ol g\t
zero asT,—T;. _ o _ _ q(¢,U)=q, _( In—=| +.... (16)
Figure 3 supplies a graphic illustration of the relation be- Vs ¥
tween the slope of the current-voltage characteristic of the
diffuse discharge and the local value of the quantityHere and in the followingy, is an infinitely growing func-
h aq/ay, discussed in Sec. lll: The slope of curve 1 at thetion of U and ¢, is a fixed parameter. Substituting the first
point =, which belongs to the falling section of the term of the expansiofi16) into Eq.(5), one gets an equation
current-voltage characteristic, is larger than the slope of thaith two roots: a trivial oney,,=0, which belongs to the
straight line 4, which means that/dy>1/h at this point;  branch of the current-voltage characteristic of the diffuse dis-
the slope of curve 1 at the poitit= i3, which belongs to the charge that coincides with the axis of voltages, and a positive
growing section, is smaller than the slope of the straight lingoot ,,= ¢, exp(—a,h/¢,), which belongs to the falling
4, which means thatg/dy¥<1/h at this point; the slopes of section of the current-voltage characteristic and tends to zero
curve 2 and the straight line 4 at the tangent point are equa#t largeU. Differentiating the first term of the expansion
which meansdq/dy=1/h at the point of minimum of the (16) with respect tay and substituting the positive root, one
current-voltage characteristic. One can see from Fig. 4 thdinds thath dg/d¢ on the falling section of the current-
the temperature of the cathode surface monotonically involtage characteristic tends to unity at large Thus the
creases with an increase of the current density, which corcurrent-voltage characteristic of a diffuse discharge in this
forms to the general reasoning of Sec. lll. example is similar to that of the diffuse discharge on a ther-
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mionic cathode, i.e., includes a branch coinciding with the r
axis of voltages and a branch with a minimum; however, the  #(X,y,0;U) = ¢,,(U,) +5. 43932( 3-05“}5)
quantityh dq/d« on the falling section is nonmonotonic and
bifurcation points exist in pairs, as it is in the situation de- X c0g 20+ B,)VCo(U—Uy)+ - - -,
picted in Fig. 2.

The considered mathematical example is representative
for a glow discharge on a cold cathode: The current-voltage 9 ,
characteristic of a diffuse glow discharge includes a branchy,yx y 0:u)= l/fw(Ug)_|:Clh_q+5. 67p2\]0(3_83%:_z) }
coinciding with the axis of voltages and a branch with a s
minimum, while bifurcation points on the falling section of X(U—Ug)+--- (21)
the current-voltage characteristic exist in pdR$ As far as 8 ’
a thermionic cathode is concerned, one can see from Fig. @herey. is a value of the voltage drop that corresponds to
that the functionq(y,U) decreases with a decrease ¥f  qith pifurcation pointy is the distance from the center of
much faster than it is described by EQ6). In order t0  he circle, ¢ is the azimuthal angleJ (z) are the Bessel
obtain a more adequate _example, one can replace the f'rﬁ}nctions,ﬂl and B, are arbitrary angles, and the coeffi-
term on the nght-hand side of the expansi(®) by the cientsC, andCq are given by Eqs/A16) and(A40), respec-
Arrhenius function tively.

A two-term asymptotic expansion of the functigi,(U)

(20

q(v.U)=q, exr{ _ &) . 17 in the vicinity of the pointU=U; can be found by means of
Y Eq. (6),
. , . . aq
For this example, the quantitydq/dy on the falling section Pro(U) = i, (U;) — Clhm(u —U)+---. (22)

of the current-voltage characteristic of the diffuse discharge
infinitely increases at largd [proportionally to In¢, b/, )]. ) .
Thus there are no reasons to expect a nonmonotonic behavityfollows that the termj,(U,) on the right-hand side of Eq.
of hag/ay on the falling section of the current-voltage char- (19) as well as the terng;,(U>) on the right-hand side of Eq.
acteristic and the presence of more than one bifurcation poirf® may be replaced, in the approximation being consid-
per eigenvalue under the conditions of a thermionic cathodegred, by, (U). Equation(21) can be rewritten as

The results of numerical calculations conform to this con-
clusion: The quantit)haq/_(?zg on the fr_;\lling sc_action of the W(x,y,0:U) =i, (U)—5. 67K:2J0(3.832|r5
current-voltage characteristic of the diffuse discharge mono-
tonically increases with an increase 0f in all the cases
considered, so multiple bifurcation points associated with a
single eigenvalue have not been detected. As an example we

?etermflne t_3|fur|cat|or|1_ %omtsf forha_ tﬁ:‘g?tig CathOd% |nf the&D solutions branches off at the first bifurcation point. If
orm of a circufar cylinder of a height o mm and of a Cy>0, the solutions exist in the rang¢=U,, i.e., are su-

radiusR in the atmospheric-pressure argon plasma. The rebercritical If Co<0, the solutions exist in the range
. . . . 9 y
sults of the calculation of the wave number are shown in F'g'sul, i.e., are subcritical. Perturbations described by these

4. The first three positive eigenvalues of the I\_Ieur_nann .prObéqutions increase with increasing distance to the bifurcation
lem for the two-dimensional Helmholtz equation in a circle

are (see the Appendix point proportionally to\/|_U —U,|. The functiond;(kyr) in-
creases monotonically in the ranges0<R, hence the per-
turbations of the cathode surface temperature have a point of
maximum somewhere at the ring=R. Thus the solutions
branching off at the first bifurcation point describe the begin-
Bifurcation points associated with these eigenvalues ar@ing of the formation of a spot at the edge of the cathode.
shown in Fig. 4 forR=2 mm. As it is pointed out above, Since these solutions are identical to the accuracy of a rota-
only one bifurcation point was found for each eigenvalueion, they can be considered as a single solution with an
For clarity, the dashed lines have been added to Fig. 4 thairbitrary azimuthal position of the spot.
illustrate finding bifurcation points after a distribution of the  Similarly, 3D solutions branching off at the second bifur-
wave numbers along the current-voltage characterigi¢  cation point can be considered as a single solution describing
and the spectrurk,k;, ... have been determined. the beginning of the formation of a system of two spots
The asymptotic behavior of multidimensional solutions in positioned opposite each other at the edge of the cathode,
the vicinity of bifurcation points follows from the results with an arbitrary azimuthal orientation of the system. This
given in the Appendix. In particular, the distribution of the solution is supercritical iCg>0 and subcritical ifCo<0.
surface temperature is Calculations folR=2 mm indicate thaCq is positive for
bothi=1 andi=2. Hence 3D solutions describing modes
r with a spot at the edge and two spots at the edge are super-
PxY.0U)=¢n(Uy) +4. 094]1( 1-84]§) critical in the conditions considered.
An axially symmetric solution that branches off at the
Xcog 6+ B1)VCo(U—-U)+---, (19  third bifurcation point exists folJ both below and above

X(U—Ug)+---. (23)

One can see from E@19) that a one-parameter family of

k;=1.841R, k,=3.054R, k;=3.832R. (18
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Us, i.e., has both sub- and supercritical branches. Perturba- 28 =, .\ (.=0.5 mm
tions described by this solution grow proportionally itb u (V)
—Uj;. Jo(ksr) is monotonically decreasing in the range 0
=<r=R, hence the supercritical branch describes axisymmet- 24 —
ric perturbations of the cathode surface temperature with a
maximum either at the center or everywhere at the edge of
the cathoddat the ringr =R), depending on whetheZ, is 20 -
negative or positive. The subcritical branch describes pertur-
bations with a maximum at the center@,>0 and at the 7
edge ifC,<<0. Thus the axisymmetric solution branching off 16 =
at the third bifurcation point describes two physically differ-
ent modes: a mode with a spot at the center of the cathode . ]
and a mode with a ring spot at the edge. N .

Calculations folR=2 mm indicate tha€C, is positive for 124 c
i =3. Thus the supercritical branch describes the mode with a § B E
ring spot and the subcritical branch describes the mode with I (A)
aspotatthecenter_ 8 T T T 11T T T T Trrr T rrrrm

Current-voltage characteristics of the spot modes in the 10 100 1000 10000
vicinity of a respective bifurcation point are described by Eg.
(A42) fori=1,2 and by Eq(A33) for i =3. One can see that
the differencdj)—j p increases proportionally td — U; for
i=1,2 and to U—U3)? for i =3. Hence the current-voltage
characteristics of modes with one or two sppts_ at the quﬁ,ith two spots at the edg®D’, the mode with a spot at the center;
branch off from the qurrent—voltage charact.er!stlc of the d'f'DD", the mode with a ring spot at the edge: 1, the normal-spot
fu.se mode at a certain angle; thg characteristics of the mod%de; 2, the spot on an infinite plane cathole; the point of
with & spot at the center and a ring spot at the edge have thginimum of the current-voltage characteristic of the diffuse mode.
same slope at the bifurcation point as the characteristic of the
diffuse mode. Calculations foR=2 mm indicate that the genvalue indicates that a solution with a spot, once having
quantity (14) is positive at all three bifurcation points, hence branched off from the 1D solution, will not rejoin the latter.
current-voltage characteristics of the spot modes branch ofth other words, the current-voltage characteristic of the
into the region above the current-voltage characteristic of thenodes with spots in Fig. 5 that branch off from the lia&
diffuse mode. at the pointsB, C, andD will not rejoin AE, in contrast to

The current-voltage characteristic of the diffuse dischargdines BB’, CC’, andDD’ in Fig. 2. Thus a possible sce-
on a tungsten cathode of a height of 10 mm and radius ofiario is as follows: The characteristics, after having left the
2 mm in the atmospheric-pressure argon plasma in the varisicinity of bifurcation points, turn back to the falling section
ablesl,U is shown in Fig. 5. Sections of the curv@8’ and  EA of the current-voltage characteristic of the diffuse mode,
CC’ depicted by solid lines represent the asymptotic behaveross it, and then go up to infinity, being positioned between
ior of characteristics of the modes with one and two spots athe sectionAE and the axis of voltages. This scenario is
the edge, respectively. The characteristics of the modes depicted in Fig. 5 by the dashed lines.
spot at the center and with a ring spot at the edge are indis- It is of interest to compare the above conclusions with the
tinguishable in the vicinity of the bifurcation poif from  results of numerical calculatio43], carried out for a tung-
the characteristic of the diffuse discharge, which is a consesten cathode in the form of a circular cylinder in the
guence of the fact that terms of the quantity) at the point  atmospheric-pressure argon plasma. A solution with a spot at
D nearly compensate for each oth{ére difference between the center of the cathode as well as that describing the dif-
these terms is about 10% of their sum fuse mode have been found [ih3] for the caseh=6 mm,

The above analysis allows one to draw some qualitativdR=3 mm. The current-voltage characteristics of the two
conclusions concerning current-voltage characteristics of thenodes fit in the scenario shown in Fig. 5, which supports the
spot modes outside the vicinity of bifurcation points. A trendqualitative considerations given above. On the other hand,
that can be seen in Fig. 2 is that the current-voltage charaghe spot solutiorf13] does not join the solution describing
teristics of spot modes, once having branched off at thehe diffuse mode, which means that the former has been
pointsB, C, andD, go up; the characteristi¢€C’' andDD’ found only in a part of its existence region; the second axi-
that branch off into the region between the growing sectiorsymmetric spot mode discussed aboveuk one with a ring
OA of the current-voltage characteristic of the diffuse modespoy was not found. This is a manifestation of a difficulty
and the falling sectio®E remain in this region; the charac- inherent to numerical methods in problems with multiple so-
teristic BB’ that branches off into the region between thelutions: If the number of solutions is unknown, one cannot be
falling sectionAE and the growing sectioBF turns back to  sure that solutiofs) found numerically represent the whole
AE, crosses it, and then remains in the region betw@én spectrum of existing solutions.
andAE. The data in Fig. 5 have been calculated for the cathode

It is expected that this trend will remain the same also foradius of 2 mm. With an increase of the radius, the current-
the thermionic cathode considered here. On the other hanspltage characteristic of the diffuse mode will shift to larger
the presence of no more than one bifurcation point per eieurrents while the bifurcation poin®, C, andD will move

FIG. 5. Current-voltage characteristics of various modes of cur-
rent transfer to a tungsten cathode of a height of 10 mm and radius
of 2 mm in the atmospheric-pressure argon plasiiaF, the dif-
fuse modeBB’, the mode with a spot at the eddeC’, the mode
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closer to the point of minimuri. Characteristics of the spot 28 —
modes will tend to show the normal current density effect, U (v) |
i.e., will reveal a plateau & =U,,. (The plateau is shown in
Fig. 5 by the horizontal ling.The characteristics of the mode 24 —
with a spot in the center of the cathode and the mode with
two spots at the edge will tend at high voltages closer to the
current-voltage characteristic of a spot on an infinite plane 20
cathode (This characteristic was calculated by means of the
model[14] with the changes described in Sec. IV A and is
shown in Fig. 5 by line 2; the numbers near the line desig- 15
nate values of the spot radiusThe characteristic of the
mode with a spot at the edge will tend at high voltages closer 7
to the current-voltage characteristic of a spot on an infinite 12 —
plane cathode displaced to lower currents by a factor of 2.

One can see from Fig. 5 that the diffuse mode is the only -
one possible at high currents. It is expected that the diffuse
mode at constant current is unstable on a falling section of 8 L RLLREL) B L B L
the current-voltage characteristic beyond the first bifurcation 10 100 1000 10000

S . A ;
E(Xn.t' 'I':e." 05n :_Te Sectlo(?Bhln Flgt.tha;)nd on.tht.e ITe(.:tlot?] FIG. 6. Schematic of the transition between the diffuse mode
In F1g. >. Heénce a discharge that burns iniially In the 4 e mode with a spot at the edge on a tungsten cathode of a

diffuse mode will switch to a spot mode when th(_e current ha%eight of 10 mm and radius of 2 mm in the atmospheric-pressure
been decreased down to the valyecorresponding to the  5rq0n plasmaABF, the diffuse modeB’ KB, the mode with a spot
point B. (More accurately|g is a limit below which the 4t the edge; solid lines, sections of the current-voltage characteris-

diffuse discharge on a cathode with an ideally uniform sur+ics corresponding to stable states; dashed lines, sections corre-
face becomes unstable against infinitely small perturbationgponding to unstable states.

in fact, the switching may occur at somewhat higher currents
due to surface nonuniformities and/or finite perturbatipns. assume that the near-anode voltage drop and the arc column
The question of which spot mode will occur requires a cal-voltage are not affected by the change of a mode of current
culation of spot modes beyond the vicinity of bifurcation transfer at the cathode. If the voltage drop in the near-
points and investigation of their stability; an occurrence ofcathode expansion zone can be neglected, one will arrive at
the first mode(the mode with a spot at the edgseems the conclusion that an increase of the arc voltage amounts to
likely. an increase of the voltage drop in the near-cathode layer. It is
Since the diffuse mode is unstable at small currents, th&ot clear, however, whether the voltage drop in the near-
discharge at small currents can burn only in a spot modecathode layer can in fact be neglected: An order-of-
With an increase of current, a switching to the diffuse modemagnitude estimate of this voltage drop may be obtained by
occurs. The question of a current value at which this happengultiplying the electric field in the arc column by the radius
is a question of stability. It seems likely, however, that sta-of the column; if one assumes the value of 10/m for the
bility will be lost at maximum currents attainable in the spotformer and 1 mm for the latter the product will be 1 V,
mode, i.e., in the vicinity of the turning poifpointK in Fig.  which is not really much smaller than the changes of the arc
5). Since the respective current excedgs the transition Vvoltage measured. Thus the question of validity of the above
between the modes is accompanied by hysteresis. This trareasoning requires further elaboration.
sition is schematically illustrated in Fig. 6. Thus the present As it was pointed out above, the transition from the dif-
theory predicts, in agreement with the experim@ate, e.g., fuse mode to the spot mode may be expected to occur in the
[4]), a spot mode at low currents and the diffuse mode aframework of the present model at poiBt i.e., at such a
high currents, with a transition accompanied by hysteresis.valuejg of the current density that the respective wave num-
According to the theory, the transition from the diffuse berk(jg) equalsk;=1.841R. It is of interest to investigate
mode to the spot mode is accompanied in the abovethe effect of control parameters gg and on the respective
described conditions by an increase of the voltage drop in th&ransition currentz and to compare the information obtained
near-cathode layer. In other conditions, this transition maywith that given by the experiment.
be accompanied by a decrease of the voltage drop. The latter The control parameters of the present model are the cath-
applies, for example, to the caBe=2 mm,h=25 mm, in ode radius, the cathode height, the cathode material, the
which the current-voltage characteristic of the first spotplasma pressure, and species of the plasma-producing gas.
mode branches off into the region below the current-voltagd he effect of the cathode radius can be seen from Figg 4:
characteristic of the diffuse discharge and to the right of thelecreases with an increaselqf, i.e., with a decrease of the
line I=1g. Itis of interest to note in this connection that the cathode radiusly decreases even more strongly. It follows
arc voltage in the transition from the diffuse mode to the spothat a reduction of the front area of the cathode results in a
mode in most cases increases by a few v@dee, e.g.[18]  decrease of the transition current, in accord with the experi-
nd also other references cited[#]). The arc voltage may be ment[5].
divided into a near-anode voltage drop, an arc column volt- The effect of other control parameters is illustrated in Fig.
age, a voltage drop in the near-cathode expansion zone, afidin which solid lines represent dependenkgg calculated
the voltage drop in the near-cathode layer. It is natural tdor different conditions. Curve 1 has been calculated for the
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2.5 o —5.0 the dashed lines 1 and 5 in Fig. 7 coincide, as well as lines 2
k (mm™) /| Tw (10°K) and 3 in Fig. 8.
7 Ly A comparison of variants 1 and 2 shows that a cathode
2.0 A design with an increased heat resistance results in a decrease
4o of jg, which conforms to the experimeffi]. A decrease of
15 L’ ' the thermal conductivity of the cathode mateijahriants 1
' ‘ and 3 also results in a decreasejgf, which again conforms
—3.5 to the experiment5]. A decrease of the work function of the
1.0 — cathode materialvariants 1 and #results in a smallup to
30 40%) increase of g for wide cathodesof a radius exceeding
approximately 2 mm) and a decreasgj gffor cathodes not
0.5 | .5 too wide, the latter conclusion being in agreement with the
' experimen{19]. An increase of the argon pressivariants
i (A/m2) 1 and 3 results in an increase gg. A substitution of an
0.0 T T - 2.0 inert gas by mercuryvariants 1 and Bresults in a smal{up
10° 10° 10’ 10° 10°

to 20% decrease ofg for wide cathodegof a radius ex-

FIG. 7. Wave numbetsolid lineg and temperature of the cath- ceeding approximately 3 mm) and in an increasggfor
ode surface(dashed linesfor the diffuse discharge. 1, tungsten cathodes not too wide, the latter conclusion being in agree-
cathode of heighh=10 mm in Ar plasma of pressupe=1 atm; ment with the experimeri#].
2,h=40 mm; 3, zirconium cathode; 4, thoriated-tungsten cathode; One can conclude that, although a quantitative compari-
5, p=5 atm; 6, Hg plasma. son of theoretical values of the transition current with avail-
able experimental data is not possible due to the idealized

same variant as above and represents the same data that @@@metry of the cathode assumed in this work, a qualitative
shown in Fig. 4; all other variants differ from the that men- agreement is present.
tioned above by one of the parameters. Cathode materials
have been chosen in order to illustrate separately the effects
of the thermal conductivity and the work function, which are V. CONCLUDING REMARKS
the parameters characterizing the cathode substance in the ) ] ) )
model[14]: Zirconium has an essentially lower thermal con-  1he equation of heat conduction has been considered in
ductivity than tungsten and nearly the same work functionthe body of a thermionic cathode in the form of a right cyl-
while thoriated tungsten has the same thermal conductivitjnder. Bifurcation analysis shows that this equation, apart
and an essentially lower work function thgpure tungsten. from a 1D solution describing a diffuse mode of current
For convenience, the respective temperatures of the catho@i@nsfer to the cathode, has also multidimensional solutions
surface and current-voltage characteristics are also presentddscribing various spot modes. Since these solutions have
(the dashed lines in Fig. 7 and the lines in Fig.Bote that been obtained with the use of a single-valued function
q(T,U), it follows that the nonuniqueness of the multidi-
08 — mensional thermal balance of a finite sample heated by a
nonlinear external energy flux may be the reason for the
5 existence of multiple modes of current transfer to thermionic
cathodes, in addition to or instead of the nonuniqueness of
possible states of a plasma in the near-cathode layer for a
given cathode surface temperature and a given voltage drop
in the near-cathode layer.

One bifurcation point per eigenvalue has been found, in
contrast to the case of a cold glow cathode when two bifur-
cation points are associated with an eigenvalue. It is of in-
terest to emphasize that this contrast appears in spite of the
similarity of the current-voltage characteristics of the diffuse
mode, which in both cases includes a branch coinciding with
the axis of voltages and a branch with a minimum. The pres-
ence of only one bifurcation point per eigenvalue indicates
that a solution with a spot, once having branched off in this
point from a 1D solution describing the diffuse mode, will
not rejoin the latter. Qualitative conclusions have been drawn
8 T on current-voltage _character_istips of modes yvith spots.

10° 108 107 10 10° 1010 The resu'lts obtamed qualitatively agree with avaﬂaple ex-
perimental information, thus supporting the hypothesis that

FIG. 8. Current-voltage characteristics of the near-cathode layeihe multiplicity of modes of current transfer to hot arc cath-
with a diffuse mode of current transfer. The parameters of thedodes is related to the nonuniqueness of the multidimensional
curves are the same as those in Fig. 7. thermal balance of a cathode.

U (V)4

24 —

8
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A7
APPENDIX: BIFURCATION THEORY (A7)

. . . L . Here and below all the derivatives of the functipare taken
Bifurcation analysis of the problefid) and(2) is given in at = (U.), U=U., and the functionsl, and i, on the

[1] for the case of nondegenerate eigenvalues. In this appen- .
dix results are presented for eigenvalues of arbitrary degr réght-hand sides of Eq4AB) and (A7) are evaluated at

of degeneracy, which are needed, for example, to treat initial Since a bifurcation occurs in the point considered, the

bifurcation points for a circular cylinder. Formulas are de- . .
rived for current-voltage characteristics described by multi-prOblems (A3) and (A4) must have nonunique solutions.

dimensional solutions in the vicinity of bifurcation points. The respective homogeneous problahich is obtained by

An application of the results obtained to the particular caséjmpp'.ng Fp on the right-hand S'd‘? .Of the f!rst boundary
of a circular cylinder is considered. condition (A4)] must have a nontrivial solution. In other

Suppose thati=U is a bifurcation point and designate words, one should consider the homogeneous problem as an

. : o eigenvalue one, the role of the eigenvalue parameter being
by ¢(z) a respective 1D solution. We seek a solution in theplayed by the quantingq/dy, which is the only control

vicinity of this point in the form of a series :
parameter of the homogeneous problem for a given geom-

2 etry.
Y(X,Y,z;U)=o(2) + eh1(X,Y,2) + 87¢2(x,y,z) Separating the variabefrom x andy, one finds that the
eigenvalues and the respective eigenfunctions of the homo-
&3 geneous problem are related by the formulas
+_l/l3(X,y,Z)+' T (Al)
6 aq .
wzkicothkih, ¢=>d(x,y) sinhkj(h—z) (A8)

wheree is a small parameter related tb—U; . In order to
incorporate cases of perturbations growing in the vicinity of

to the eigenvaluek; and the eigenfunction® of the Neu-
the bifurcation point proportionally t&) —U; or |U—U;|, g ' g

mann problem for the two-dimensional Helmholtz equation

we write
g2 o + (92q>+k2q) 0 for G
—+—5+ki®=0 for G,
U=U;+ea;+ 5 a2 (A2) X2 ay?
and will choose at a later stage eithey=1 anda,=0 or @:0 for g (A9)
a1=0 anda, equal to 1 or—1, as it will be appropriate. an '

Problems governing the functions, , ¢, ,#3; may be de- ] ) . ]
rived by differentiating Eqs(1) and (2) with respect tos ~ WhereG is the cross section of the cylindg s the bound-
once, twice, and three times, respectively, and setting ary of the regiorG, andnis a direction locally orthogonal to

—0: g. It is known[20] that all eigenvalues of the proble(A9)
are real and of finite degeneracy; a set of eigenvalues is
sz,bp=0, (A3)  countable and may be numbered in order of their increase,
the eigenvalues growing unlimitedly with the increase of the
Iy 99 number._We denote the set of eigenvalues _numbered in order
- Ipljfszp for z=0, of their increase byg,k;,ky, .... LetN; (i=0,1,2...)

be a degeneracy of theith eigenvalue and ®;,
=d;(xy) (i=0,1,2...;m=1,...N,) be the orthonor-

Yp=0 for z=h, (A4) mal set of eigenfunctiong @@ ) = &i; Smk, Where the an-

gular brackets designate averagingkiandy over the cross
’9_%20 for T section of the cylindgr The second index will be dropped in

an ’ the case of functions associated with nondegenerate eigen-
values. Note thak,=0, No=1, ®y=1, k;>0, and(D;,)
where the inde runs through values 1,2,3 and =0 fori=1.

Multidimensional solutions branch off at bifurcation

= :5_qa (A5) points associated with nontrivi&l . Thus we assume that

mou Tl =1 in Eqgs.(A8).
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The inhomogeneous problenti$3) and(A4) are solvable

provided that the inhomogeneous terms are orthogonal to the

nontrivial solutions of the homogeneous problem

(Fp®im)=0 (A10)

for eachm=1,... N; and p=1,2,3. A solution may be
found by means of expansion in eigenfunctions of the homo
geneous problem and reads

N;
Yo=— Cl(Fp)(h—z)+sinhki(h—z)m§_:1 APD,

©

N
P, F
+2 2 < Im p> :
=1 m=1 k,coshk,h—k;cothk;h sinhkh
I#i

X sinhk,(h—z) ®,, (Al1)
whereA® are arbitrary constants and
C,=(kih cothkih—1) 1. (A12)
It can be seen from EqA1l) that
(p(x,y,00)=—Cy(Fp)h. (A13)

For p=1, the solvability conditior{A10) is obviously satis-
fied (note thatF,=const). The terms of the double sum on
the right-hand side of EqA11) vanish and one gets

Nj
h—z)+sinhk(h—2) >, AYd, .
m=1

(A14)

- c 99
== 1%011(

Analysis of the first approximation has been completed;

however, coefficientAlY) remain indeterminate. The solv-
ability condition of the equation of the second approximation
should be considered in order to find these coefficients. Th
function F, may be found by substitution of E¢A14) into
the right-hand side of EA6)

G OF A PLANE SAMPLE ... 6491
N; N
2C2a1 1 ! i . )
A2 S (i AVAD =0,
(A7)
wherev=1, ... N;.

In a general case, the system of equatioh$7) has a
trivial solution A{=0, which corresponds to the 1D solu-
tion of the original probleni{1) and(2), and solutioks) pro-
portional toa, which correspond to multidimensional solu-
tion(s) branching off from the 1D solution. One can set
=1 and«,=0 in this case, thus=U—-U;. Perturbations
branching off at the considered bifurcation point grow pro-
portionally toU — U, .

Consider now a special case of a bifurcation point for
which (®j; @i, ®;,) =0 for all j,m,v from 1 toN;. In such
a case, one should set =0 in order that Eq(A17) allow
nontrivial A%Y). Thus the condition of solvability of the
equation of the second approximation does not allow one to
determineA(}) and one should consider the condition of
solvability of the equation of the third approximation.

The functiong, may be found by substituting EGA15)
into the right-hand side of E4A11) for p=2

0—,2q N;
0 ngl AY2](h-2)

ar+ sinhzki hE

b=—Cy
N;

+sinhk,(h—2) >,

m=

il

AP+ sinktk:h
1 m m I (91!}2

D

=

N
] nZzl AVA( DD, D)
1 k,coshk,h—k;cothk;h sinhk;h

o NI
x> 2
I=1 m=

I #i

X sinhk,(h—2) |, . (A18)

Using this expression for evaluation Bf; and substituting
the result into the right-hand side of E@\10) for p=3, one
obtains the following system of algebraic equations for co-
efficientsA(Y:

. . . 71
9%q aq \? #q dq , 9q , MA<1>+§ % % 7q( i°q (D Dy, D)
Fzzﬁ_t//z Clhmal) _chhmm“ﬁﬂal sinffkih * =1 @=10=1 | 9yl ay? o
N; 02q
Jq . e +3h— Bjmn, |AVAYAL =0, A19
+ 2 @2+ 2 sinhkih cza—lpzalngl ADD, gy2 imne | A A An (A19)
5q NGON wherev=1, ... N; and
+sinh?kih&—¢2mzl ngl AVADD, D, (A15) N,

where

J%q
PP

C,= 7
27 9y oU

h-5- (A16)

)1_

- u; (D D@, (D Di, Py
| #i

Bimn =~ C10mn+ 24 T} Heothk;h— k;h cothkih

(A20)

In a general case, the system of equatigh$9) has a

trivial solution, which corresponds to the 1D solution of the

Substituting Eq(A15) into Eq. (A10) for p=2, one arrives

original problem, and solutige) proportional to |y,

at the following system of algebraic equations for coeffi-which correspond to multidimensional solutighbranching

H 1).
cientsA(H:

off from the 1D solution. Sincer;=0, one can se&, equal
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to 1 or —1 in this case, thus=y2|U—U;|. Perturbations 0.80
branching off in the considered bifurcation point grow pro- Co J
portionally to y|U —U;|. For N;=1, the above formulas co- o
incide with respective formulgdd] providedT in the formu- 075 1~~~
las[1] is replaced by, Q by gh, y by 1-z/h, zbyy, and
k by kh. i

The coefficientsA{!) provide, to a first approximation, a .7 —
complete description of multidimensional solutienin the
vicinity of the bifurcation point. In particular, one can calcu- ]
late the current-voltage characteristics described by these so- ¢ _|
lutions. Expanding the average current density at the cathode
surface in the vicinity of a bifurcation point, one gets .

&2 0.60 —
<J>—Jo+ 8<¢1>+ ('ﬂz) Julgat > 2) | »
2 ] (?2- 82 (92] 2 0.55 T T T T T I T ]
77(!#0 a¢au<¢1>“1+7ﬁal+m’ 1.0 15 2.0 25 MR 39
(A21) FIG. 9. CoefficientCy,.

wherejo=j[#(U;),U;] and all the derivatives of the func- As an example, we apply the above theory to the case
tion j=j(4,U) are taken aty=¢(U;), U=U;. Using Eq. when the cathode is in the form of a circular cylinder, i.e.,
(A13) for p=2 and Eqgs(A6) and(A14), one finds when G is a circle. The spectrum of the problefA9) is
given by the formula

e2( 3] aj & N
(I)=lwt 7(5—1;2 Clhaj// q)sml*?khz A(l)2 k,sR=]. s, (A27)
(A22) wherev=0,1,2...,s=1,23..., Ris the radius of the
Here cylinder, andj, ¢ is the sth zero of the derivative of the
Bessel function of the first kind of order (according to the
_ ) , 1 5 conventional nomenclaturg21], j,,=0 andj,,>0 for »
Jip=Jot Caase+| Chait §C3a2 gt -, (A23) =1). Suppose that the eigenvalues are numbered in order of
their increase:
where .y ,
dj dj dq Ko=Ko1=0, klzkuz%l: kzzkzﬁ%l,
Cy=57—Cih— —, (A24)
U U
o
1 (92] (92] [?q Clh ﬁj é,Zq k3—k02—ﬁ, ey (A28)

Ci=5 0 1
2 ,9U2 z?lﬁc?U 1Z}V] 2 9y ,9U2
wherej; ,~1.841,j,,~3.054, andj, ,~3.832[21].
9] d%q dq (Ch)? &3 ( q) Eigenvaluesk,; with »=0 are simple; those withv=1

3y agdl U 2 g2

+(Cth)?— are doubly degenerated. Orthonormalized eigenfunctions as-

sociated with the eigenvalues with=0 and to those with

(C.h)3 gj o%q( dq v=1 are given by the formulas
—_—— ) (A25)
2 9y ay?\ U 1
®j=———Jo(Kosl) (A29)
Obviously, j;p=]j1p(U) has the meaning of the current- oliog)
voltage characteristic described by the 1D solution. To th
accuracy to which EqA23) was derived, it can be rewritten
as CDu] [ 2 Ius ko) {cosw
. . = T 5 : A Kysl X . ’
jip=Jo+C3(U—Uj)+Cu(U—U)?+---. (A26) D, i2=123,(j0 ) s sinve
(A30)

In the first case considered above, wheaU —U,, the
three terms on the right-hand side of E#26) must be respectively, where is the distance from the axis of the
retained. In the second case, whea 2|U—U;|, the order  cylinder, 6 is the azimuthal angle, andl,(x) is the Bessel
of magnitude of terms dropped on the right-hand side of Egfunction of the first kind of ordew.
(A22) is o(|U—Ujy|), therefore the third term on the right-  Consider first a bifurcation point associated with one of
hand side of Eq(A26) may be dropped as well. the (positive simple eigenvalues withw=0, s=2,3,4 . ...
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The system(A17) is reduced to one equation for the only (®;;®;,®;,)=0 for j,m,v=1 or 2, one has to employ Eqg.
unknown coefficienA(ll). This equation has a nontrivial root (A19). To this end, the quantitieg®;;®;,®;,®;,) and

Bjmn, Should be calculated. One finds
CoCs

(H__~=7>
AT = Sinhk;h' (A31) (@i Pim®in®i,) = (8O, + S0 Srmy + Bju i) o,
(A34)
where the numerical coefficieris=—2/®?) is given by
the formula where
3/ ! 3,7 ! J 1,/,45 1 A,
Cs=—J5(jos) Jo x J5(josX) dx (A32) Ce= N ;?S_ 2230 fo xJ(j, X)) dx.  (A35)

Note that fori=3 (s=2), Cs=2.287. The asymptotic be- Nqte that the numerical coefficien@s for i=1 (v=1, s
havior of the current-voltage characteristic of an axially sym-_ 1) andi=2 (v=2, s=1) equals 0.5840 and 0. 6842, re-
metric solution that branches off at the considered point maysectively. ' ’

be found from Eq(A22): Calculation of the quantit®;y,, gives
CE[ ] aj *q| R R
S\ ) _ 2 —U.)2+...
(D=lw+ 2(&4,//2 o G Co(U—UpTt---. Bimno = —cl+H(c7—cg)}5jm5nv+cgﬁ(5jn5mv

(A33)
+ 5]1) 5mn)v (A36)
Consider now a bifurcation point associated with one of
the (doubly degeneraje eigenvalues withv=1. Since where

2

1
fo x J%(j ».X)Jo(jogX)dx

4y 2
TR A& L T T (ASD
. e Jo(iop)|Joscot Jotg —1,,scot lusg
1 2
2] 14 o [J év,t fO X ‘]12/(1 ;,SX)JZV(J- éV,IX)dX
Cg= o > (A38)

s s h s s h .
JZv,tCOt J 2V,t§ _J V,SCOt J V,Sﬁ

Substituting Eqs(A34) and (A36) into Eq. (A19), one ob- not exceed 7% for=1 and 1% fori=2). The asymptotic
tains values given above are attained ldiR=2.8 fori=1 and
h/R=1.8 fori=2.

2 For a nontrivial solution, the syste#®39) is reduced to
(1) Cga2 (1)2 . . R
AL — — +> AbZI=q, (A39)  one equation, which gives
sinfPkih  m=1 ,
D pwa__Co%2 (A41)
Herev=1,2 and m=1 " sintPkh’
92q aq 2 #q Obviously, one must choose,=1 if Co>0 anda,=—1 if
Co=| Cah— —5 = 55,201 | o7 3 T (CaR=Csh) Co=0.

Iy ¢ 2 Thus we have been able to determine the sakh?

-1 +AM? while the coefficientsA{”) and AV separately re-

2\ 2
X(ﬂ) (A40) main indeterminate. This means that a continuum of solu-
P tions of a given amplitude branches off in the point consid-
ered. A current-voltage characteristic of any solution of this
The quantityC,y,=C-+ Cg introduced here is a function continuum is the same and is described in the vicinity of the
of h/R and is shown in Fig. 9 for=1 andi =2. The dashed bifurcation point by the formula
lines represent asymptotic values of this function for large

2; L2
h/R, which are equal to 0.5659 far=1 and 0.7536 foii (Y =j+ 0_J_Clh3_1(9_q Co(U—=Uj)+---.
=2. One can see that the dependenc€gfon h/R in the ap? I gy? '

rangeh=R is in fact rather weakthe variation ofC,y does (A42)
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