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Nonlinear surface heating of a plane sample and modes of current transfer to hot arc cathodes

M. S. Benilov
Departamento de Fı´sica, Universidade da Madeira, Largo do Municı´pio, 9000 Funchal, Portugal

~Received 20 May 1998!

A hypothesis is suggested that nonuniqueness of multidimensional thermal balance of a finite sample heated
by a nonlinear external energy flux may be a reason for the existence of multiple modes of current transfer to
hot arc cathodes. In order to check this hypothesis, bifurcation analysis has been carried out of the equation of
heat conduction in the body of a thermionic cathode supplemented with a boundary condition describing
heating by the adjacent plasma. Multiple solutions have been found, one of them describing a diffuse mode and
others describing various spot modes. Solutions describing spot modes have been calculated in the vicinity of
bifurcation points and analyzed qualitatively outside this vicinity. Qualitative conclusions concerning a tran-
sition between the diffuse discharge and the first spot mode conform to available experimental information.
@S1063-651X~98!00711-9#

PACS number~s!: 52.40.Hf, 52.80.Mg
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I. INTRODUCTION

The problem of multidimensional steady-state tempe
ture distributions created in a plane sample by a nonlin
external heating was formulated and analyzed in@1# as a
mathematical example exhibiting characteristic features
constricted current transfer from a plasma to an electrod
was found that the problem has, under certain conditio
multiple solutions, which have been associated with differ
modes of current transfer to an electrode. The appro
based on the bifurcation theory was used. It was shown
the bifurcation analysis provides valuable qualitative inf
mation on modes with current constriction, as well as
initial approximation for numerical calculations. In@2#, the
bifurcation analysis has been employed in order to study
effect of normal current density on cold glow cathodes.
@3#, the theory originally developed in@1# was recast, for a
two-dimensional case, into a somewhat different form; a p
ticular case of the step-function dependence of the exte
heat flux on the surface temperature was considered.

Solutions found in@1# reveal some features typical fo
near-electrode current constriction in general, such as
effect of normal current density, which is observed on c
cathodes in glow discharges. On the other hand, a proble
a high technological interest exists in which the model
nonlinear external heating of a plane sample may not o
represent a mathematical example, but also be physically
equate: This is the problem of multiple modes of curre
transfer to hot arc cathodes. The essence of the problem
follows: current transfer to hot arc cathodes may occur i
spot mode, when nearly all the current is localized in a
gion occupying only a small fraction of the cathode surfa
~the spot!, and in a diffuse mode, when the current is distr
uted over the front surface of the cathode in a more or
uniform way. A transition between the diffuse and sp
modes is accompanied by hysteresis~see, e.g.,@4#!, i.e., a
current range exists in which both a diffuse mode and a s
mode may occur, depending on the prehistory. Descripti
of experimental observations of multiple modes of curr
transfer to hot cathodes in high-pressure arcs can be fo
e.g., in @5#; we mention also Ref.@6# as an example of a
PRE 581063-651X/98/58~5!/6480~15!/$15.00
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recent work. The question of multiple modes of curre
transfer to hot arc cathodes is of crucial importance, in p
ticular, for high-pressure discharge lamps@7#. Note that dif-
fuse and spot modes occur also at arc anodes~see, e.g.,@8–
10#!; however, the question of anodes is beyond the scop
the present work.

In @7#, equations describing the near-cathode plasma w
solved jointly with an equation of electron emission from t
cathode surface. Two solutions have been found for e
surface temperature and near-cathode voltage drop, on
them with low values of the current density and the elec
field at the cathode surface and another with high values.
cathode operates via Schottky-amplified thermionic emiss
in the framework of the first solution and via thermofield
field emission in the framework of the second solution. T
first solution has been identified with the diffuse mode a
the second one with the spot mode.

Similar physics has been discussed in@11#: The cathode
operates via Schottky-amplified thermionic emission in o
mode and in a regime close to pure field emission in ano
mode. The ion current makes up a reasonable fraction of
total current in the first mode and is negligible in the seco
mode, which resembles the concept of the diffuse and s
modes developed in the early work@12#.

Note, however, that an adequate theoretical descriptio
multiple modes of current transfer to a hot arc cathode d
not necessarily involve essentially different physical mec
nisms. This is rather a mathematical question of find
nonunique solutions: An adequate theoretical model of c
rent transfer to hot arc cathodes must in some cases a
different steady-state solutions to exist for the same con
tions, which describe different modes of current transfer.

A simple theoretical model of current transfer to hot a
cathodes~see, e.g.,@5# and references therein! is based on the
equation of heat conduction in the cathode body supp
mented with a boundary conditionk]T/]n5q(T,U) at the
current-collecting surface, wherek is the thermal conductiv-
ity of the substance of the cathode,T is the temperature,n is
a direction locally orthogonal to the surface and directed o
side the cathode,q(T,U) is the density of the heat flux from
the plasma to the surface, andU is the near-cathode voltag
6480 © 1998 The American Physical Society
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PRE 58 6481NONLINEAR SURFACE HEATING OF A PLANE SAMPLE . . .
drop that is assumed to be the same for all points of
current-collecting surface and should be chosen in suc
way that the integral current to the cathode surface tak
prescribed value. The functionq5q(T,U) is calculated by
means of analysis of a plasma layer adjacent to the cath
surface and is considered as known while treating the p
lem of heat conduction in the cathode body. According to
above, an adequate theoretical description of multiple mo
of current transfer to hot arc cathodes amounts to find
nonunique solutions of this problem, i.e., to finding differe
temperature distributions inside the cathode and on its
face that may occur for the same conditions. It should
expected that one of these distributions will correspond
the diffuse mode and others will correspond to spot mod

It is of interest to consider from this point of view th
above-mentioned works@7,11#. It follows from @7# that
plasma states in front of the cathode with a given tempe
ture of the surface and a given voltage drop across the n
cathode region may be nonunique. Hence the func
q(T,U) may be multivalued. This may be a reason for non
niqueness of temperature distributions in the cathode,
one may think of solutions with different branches of t
function q(T,U). However, the question of whether the
nonunique solutions describe spot modes requires a mu
mensional solution of the heat conduction equation in
cathode body, which has not been attempted in@7#. In @11#,
the heat conduction equation in the cathode body has b
solved numerically in the approximation of axial symmet
However, no multiple solutions have been presented
question remains open whether the solution@11# describes
one mode that changes its appearance with a change of
ditions or the solution under changing conditions pas
through a bifurcation point in which it continuously switch
from one mode to another.

With regard to multiple solutions to the above-describ
problem, the work@13# should be referred to in which th
heat conduction equation in a cylindrical thermionic catho
was solved numerically in the approximation of axial sy
metry. A unique solution has been found for a cathode
ometry modeling experimental conditions; however two
lutions have been found in a certain current range for a w
cathode~of a diameter equal to its height!, one of them with
a relatively uniform temperature distribution over the ca
ode surface~the diffuse mode! and another with a high tem
perature in the center of the cathode and a relatively c
periphery~the spot mode!. A reason for existence of multiple
solutions was not discussed.

Summarizing the above, one can say that a possible
son for the multiplicity of modes of current transfer to h
arc cathodes found in the literature is a multivalued chara
of the functionq(T,U). On the other hand, the mathematic
treatment@1# indicates that another reason is possible:
multidimensional thermal balance of a finite sample hea
by a nonlinear external energy flux may be non-unique.
other words, the equation of heat transfer in the cathode b
may have multiple solutions if considered in more than o
dimension even if the functionq(T,U) is single valued.

It is of considerable interest in such a situation to ap
the approach@1# to the conditions of a thermionic cathod
with the aim of solving the question of nonuniqueness of
thermal balance and, if multiple solutions exist, of a quali
e
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tive study of multiple modes of current transfer to thermion
cathodes described by these solutions. This task is attem
in the present work with the use of a model of a plasma la
at a thermionic cathode described in@14#. Analysis of the
possibility of multiple modes due to the multivalued chara
ter of the functionq(T,U) caused by the multiplicity of
plasma states for given cathode surface temperature
near-cathode voltage drop is left beyond the scope of
present work~see a remark in Sec. IV A in this regard!.

A mathematical statement of the problem is given in S
II. General properties of solutions are discussed in Sec.
In Sec. IV calculations are presented and discussed for c
ditions of thermionic cathodes. Concluding remarks a
given in Sec. V.

II. MODEL

The model to be considered is illustrated by Fig. 1 a
represents the above-mentioned model described in@5#, ap-
plied to a particular case when a cathode is in the form o
right cylinder whose cross section is not necessarily circu
with the bottom surface being current collecting, the late
~inactive! surface being thermally insulated, and the top b
ing maintained at a fixed temperatureTc by external cooling.
Joule heat production inside the cathode body is neglec
The densityq of the heat flux to the current-collecting su
face is considered as a given function of the local surf
temperatureT and of the voltage drop across the nea
cathode layerU, which is constant along the curren
collecting surface:q5q(T,U). A steady-state temperatur
distribution within the cathode body is described by the no
linear boundary-value problem

¹2c50, ~1!

]c

]z
52q~c,U ! for z50,

c50 for z5h, ~2!

]c

]n
50 for G.

Here thez axis is directed along the axis of the cylinder fro
the bottom inside the bulk of the cylinder,h is the height of

FIG. 1. Geometry of the problem.
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6482 PRE 58M. S. BENILOV
the cylinder,G designates the lateral surface,n is a direction
orthogonal to the lateral surface in a point considered,
the functionc5c(T) is the heat flux potential related to th
temperature by the equation

c~T!5E
Tc

T

k~T! dT. ~3!

For brevity, c will be referred to as the temperature.
should be emphasized that if the density of the energy
from the plasma is known as a function ofT ~andU), then it
can be determined as a function ofc; hence the function
q(c,U) on the right-hand side of the boundary condition
z50 will be treated as given.

After the problem~1! and~2! has been solved for a give
U and a distribution of the temperature over the bottom s
face of the cathode has been found, one can determi
distribution of densityj of the electric current coming to th
cathode surface from the plasma, corresponding to thisU. @It
is implied that a dependence ofj on the local temperature o
the cathode surface and on the voltage drop in the n
cathode layer is known; this dependence is determined
means of analysis of the plasma layer adjacent to the cath
surface and is calculated simultaneously with the funct
q(c,U).] The integral currentI also may be determined
Finding a solution for variousU, one can determine th
current-voltage characteristicU(I ).

Before specifying particular forms of functionsq(c,U)
and j (c,U) ~Sec. IV!, we consider in Sec. III properties o
solutions of the considered problem for functions of a g
eral form. Certain conclusions that will be made in Sec.
depend on the signs of derivatives of these functions. Th
fore, we discuss here briefly the signs to be expected
functions of physical interest.

If the voltage applied to the near-cathode layer increa
while the temperature of the cathode surface remains c
stant, the density of the electric current coming to the ca
ode increases. The powerjU deposited in the near-cathod
layer also increases, which results in an increase of the
ergy flux to the cathode. Therefore, derivatives] j /]U and
]q/]U will be assumed to be positive.

An increase of the temperature of the cathode surface
proves conditions for current transfer, therefore the deri
tive ] j /]c will be assumed to be positive. The rate of ener
losses from the cathode surface increases. However,
power deposited in the near-cathode layer at constant vol
increases as well, hence no conclusion on the sign of
derivative]q/]c can be drawn.

If the temperature of the cathode surface increases at
stant current density rather than at constant voltage, impro
ment of conditions of current transfer results in a decreas
U and, consequently, of the power deposited in the ne
cathode layer. Thus the derivative (]q/]c) j taken at constan
current density may be assumed to be negative.

III. GENERAL PROPERTIES OF SOLUTIONS

The problem~1! and ~2! may have a one-dimensiona
~1D! solutionc5c(z) of the form
d
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hDcw , ~4!

wherecw5cw(U) is a root of the transcendental equation

cw

h
5q~cw ,U !. ~5!

The temperature at all points of the cathode surface is
same~and equal tocw), hence this solution describes a di
fuse mode of current transfer to the cathode.

Let us calculate the slope of the current-voltage char
teristic U( j ) described by the 1D solution. Differentiatin
Eq. ~5! with respect toU and resolving the obtained equa
tion, one finds

dcw~U !

dU
52

h
]q

]U

h
]q

]c
21

. ~6!

The derivative of the functionj @cw(U),U# is

d j@cw~U !,U#

dU
5

] j

]c

dcw~U !

dU
1

] j

]U
. ~7!

Substituting fordcw(U)/dU Eq. ~6!, one obtains the follow-
ing expression for the slope of the current-voltage charac
istic U( j ) described by the 1D solution:

dU

d j
52

h
]q

]c
21

hS ]q

]U

] j

]c
2

]q

]c

] j

]U D1
] j

]U

. ~8!

Introducing the derivative (]q/]c) j taken at constant curren
density, one can rewrite Eq.~8! as

dU

d j
52

h
]q

]c
21

] j

]UF12hS ]q

]c D
j
G . ~9!

Multiplying Eqs. ~6! and ~9!, one finds

dcw

d j
5

h
]q

]U

] j

]UF12hS ]q

]c D
j
G . ~10!

According to what has been said at the end of Sec.
derivatives] j /]U and]q/]U are positive while (]q/]c) j is
negative. It follows that the denominator of the right-ha
side of Eq.~9! is positive. Hence the current-voltage chara
teristic of the diffuse discharge has extrema at points
which h(]q/]c)@cw(U),U#51, is growing at points at
which h(]q/]c)@cw(U),U#,1, and is falling at points at
which h(]q/]c)@cw(U),U#.1. The right-hand side of Eq
~10! is positive. Hence the temperature of the cathode surf
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PRE 58 6483NONLINEAR SURFACE HEATING OF A PLANE SAMPLE . . .
in the diffuse mode monotonically increases with an incre
of current, without regard to whetherU is growing or de-
creasing.

The second derivative of the current-voltage characteri
in an extreme point can be found to be

d2U

d j2
52

h2
]q

]U

S ] j

]U D 2F12hS ]q

]c D
j
G2

]2q

]c2
. ~11!

It follows that an extremum of the current-voltage charact
istic of the diffuse discharge is a maximum if (]2q/
]c2)@cw(U),U#.0 and a minimum if (]2q/
]c2)@cw(U),U#,0.

In addition to the 1D solution, the problem may ha
multidimensional solutionsc5c(x,y,z) that branch off
from ~or join! the 1D solution. Bifurcation points in which
branching or joining occur and solutions in the vicinity
these points may be found by means of a bifurcation the
given in the Appendix. In particular, a procedure of determ
nation of the bifurcation points is as follows. Suppose t
the 1D solution has been determined, i.e., Eq.~5! has been
solved for all U of interest and the dependenc
cw5cw(U) calculated. After that, one should solve at ea
U the equation

]q

]c
@cw~U !,U#5k cothkh, ~12!

thus determining a wave numberk of steady-state perturba
tions that can branch off at the value ofU considered.@Note
that the functionk(U) does not depend on the cross sect
of the cathode.# After that, values ofU should be identified a
which the wave numberk(U) takes the valuesk1 , k2 ,
k3 , . . . determined by the spectrum of the Neumann pr
lem ~A9! for the two-dimensional Helmholtz equation co
sidered in the cross section of the cathode. Just these wi
the bifurcation points for a given cross section.

Sincexcothx.1 for realx, a necessary condition for Eq
~12! to have a real root is

h
]q

]c
@cw~U !,U#.1. ~13!

It follows from the above that this inequality is fulfilled o
falling sections of a current-voltage characteristicU(I ) of
the diffuse discharge. Thus, branching of multidimensio
solutions from~as well as joining to! a 1D solution may
occur only on a falling section of the current-voltage char
teristic described by the 1D solution. Note that previou
this conclusion has been derived@1# for the special case
when the current density is related to the heat flux density
the formulaq(T,U)5U j (T,U) 1const.

Formulas describing the asymptotic behavior of multi
mensional solutions in the vicinity of bifurcation points a
given in the Appendix. Also given are formulas describi
current-voltage characteristics of multidimensional solutio
in the vicinity of bifurcation points. It follows from Eq
~A22! that the current-voltage characteristic of a multidime
sional solution branches off into the region to the right of~or,
e
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equivalenty, above! the current-voltage characteristic of th
diffuse discharge if the quantity

]2 j

]c2
2C1h

] j

]c

]2q

]c2
~14!

evaluated at the bifurcation point is positive.@Here and be-
low C1 is a ~positive! coefficient defined by Eq.~A12! or,
equivalenty, by the equationC15(h ]q/]c21)21.] If the
quantity~14! is negative, the current-voltage characteristic
a multidimensional solution branches off into the region
the left of ~below! the current-voltage characteristic of th
diffuse discharge.

In the vicinity of an extreme point of the current-voltag
characteristic of the diffuse discharge, the quantityC1 is
large and the second term of expression~14! is dominating.
According to what has been said at the end of Sec. II,
derivative] j /]c is positive. Taking into account the conclu
sion on the sign of the derivative]2q/]c2 in an extreme
point drawn above, one can deduce that if a multidime
sional solution branches off in the vicinity of the point o
minimum or maximum, then the characteristic described
this solution branches off into the region above or, resp
tively, below the characteristic of the diffuse discharge.

We consider as a prototypical current-voltage characte
tic of a diffuse discharge the one depicted in Fig. 2, wh
contains two sections of growth~sectionsOA andEF) sepa-
rated by a falling section (AE). The quantityh ]q/]c on the
sectionAE first grows from unity to a maximum value an
then decreases back to unity. The wave number, being
lated to]q/]c by Eq. ~12!, on the sectionAE first grows
from zero to a maximum valuekmax and then decreases bac
to zero. Obviously, each value ofk below kmax is encoun-
tered two times on the sectionAE. In such a case, two bi
furcation points are associated with each positive eigenva
ki,kmax.

FIG. 2. Prototypical current-voltage characteristics. Solid lin
diffuse mode; dashed lines, spot modes;A andE, extreme points of
the current-voltage characteristic of the diffuse mode;B and B8,
bifurcation points associated with the first positive eigenvaluek1 ; C
andC8, bifurcation points associated withk2 ; D andD8, bifurca-
tion points associated withk3 .
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6484 PRE 58M. S. BENILOV
It is natural to suppose that a multidimensional solut
that branches off at one of these two points joins at the o
one, as is shown by dashed lines in Fig. 2. This hypoth
was confirmed by numerical calculations@1#.

If the height of the cylinder is not too large compared
its transversal dimensions, then bifurcation points associ
with the first positive eigenvaluek1 are positioned not far
away from extrema of the current-voltage characteristic
the diffuse discharge. According to the above, character
BB8 in such a situation branches off at the pointB from the
characteristic of the diffuse discharge above and rejoins
characteristic of the diffuse discharge at the pointB8 from
below, as is shown in Fig. 2.

The behavior of multidimensional solutions in a spec
case when the height of the cylinder is much smaller than
transversal dimensions is described by analysis@15#. Bifur-
cation points associated with eigenvalues with finite numb
are positioned in the vicinity of extrema of the curren
voltage characteristic of the diffuse discharge. A schem
of the current-voltage characteristic for this case is rep
sented by the dashed lineBB8 in Fig. 2. The current-voltage
characteristic reveals a plateau, i.e., the effect of normal
rent density takes place in this case. The normal voltageUn ,
i.e., a value of the near-cathode voltage that correspond
the plateau, is determined by the condition

E
c1

c3
q~c,Un! dc5

1

2h
~c3

22c1
2!, ~15!

wherec1 andc3 are values of the surface temperature t
occur atU5Un on the sectionsOA andEF, respectively, of
the current-voltage characteristic of a diffuse discharge. T
equation may be derived by means of writing Eq.~1! in the
vicinity of the boundary of the spot in two dimensionsz,l,
wherel is the along-surface coordinate normal to the bou
ary, and then either by transforming this equation to an in
gral equation@3# or by multiplying it by a derivative]c/]l
and integrating inl andz @15#.

IV. MODELING OF CURRENT TRANSFER
TO HOT ARC CATHODES

A. Function q5q„T,U…

A plasma layer adjacent to the cathode surface should
calculated in order to find the density of the energy flux fro
the plasma to the surface,q5q(T,U). A model @14# of a
plasma layer at a thermionic cathode was used in the pre
work. Calculations presented below were carried out for
gon and mercury plasmas. The parametera appearing in the
model @14# was calculated in terms of the ionization coef
cient given in@16# and the diffusion coefficient of ions in th
atom gas was calculated by means of cross sections@17,16#
for the argon and mercury plasmas, respectively.

The calculation of the near-cathode plasma layer is
duced to solving a transcendental equation for the elec
temperature in the framework of the model@14#. Two roots
of this equation have been detected in some cases, a b
root being of the order of 105 K. We discarded this root
thus leaving beyond the scope of the present work the q
tion of whether this root corresponds to a physically poss
state of the near-cathode plasma or it is physically irrelev
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having appeared due to the inapplicability of the model@14#
at electron temperatures that high.

The mechanism of electron emission in the model@14# is
Schottky-amplified thermionic emission. Secondary elect
emission~the g process! is neglected, which is a usual ap
proximation of the theory of thermionic cathodes; see, e
the discussion in@5#. Hence the results of the present wo
become inapplicable in the case of a cold cathode wit
near-cathode voltage of the order of several hundred vo
when a contribution of the secondary electron emission
the total electron emission current becomes significant.

B. Diffuse mode

One needs to solve Eq.~5! in order to find a 1D solution
associated with the diffuse mode of current transfer. As
example, graphs of the right-hand side of Eq.~5! for a tung-
sten cathode in the atmospheric-pressure argon plasma
three values of the voltage drop in the near-cathode layer
shown in Fig. 3 by curves 1–3. The straight line represe
the left-hand side of Eq.~5! for a cathode of a height o
10 mm. For convenience, the relationship between the t
perature and the heat flux potential of tungsten is also sho

One can see that ifU*11.13 V, Eq.~5! has two positive
roots~designated byc2 andc3). As U decreases, the smalle
root c2 increases and the bigger onec3 decreases. The root
merge atU approximately equal to 11.13 V . No positiv
roots exist ifU&11.13 V.

The voltage drop in the near-cathode layer and the te
perature of the cathode surface as functions of the cur
density for a tungsten cathode of heighth510 mm in the
atmospheric-pressure argon plasma are represented in F
The rootsc2 and c3 are associated with the falling an
growing sectionsAE and EF, respectively, of the curve
U( j ).

It is of interest to discuss a connection between curv
representing the dependenceU( j ) in Fig. 4 and the solid line
representing the current-voltage characteristic of the diff

FIG. 3. Graphic illustration of the 1D heat balance of a tungs
cathode of a height of 10 mm in the atmospheric-pressure ar
plasma. 1–3, the functionq5q(cw ,U) for U512, 11.13, and
10 V, respectively; 4,q5cw /h; 5, the dependenceTw(cw) for
tungsten.
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discharge in Fig. 2. Note that Eq.~5!, apart from positive
roots, has also a trivial rootcw50 that exists for allU. This
root corresponds to the situation in which no current flows
the cathode,j 50. Thus a current-voltage characteristic
the whole includes not only the branch represented in Fi
by the curve 1, but also a branch coinciding with the axis
voltages. While the first branch exists forU exceeding ap-
proximately 11.13 V~the power supply is insufficient to
heat up the whole surface of the cathode at lower voltag!,
the second branch exists for all voltages.

One can see that the current-voltage characteristic
diffuse discharge on a thermionic cathode is of the type
picted in Fig. 2, however, with an important difference: T
sectionOA coincides with the axis of voltages and the po
A is at infinity in the conditions of a thermionic cathod
Obviously, this difference results from the fact that the fun
tion q(Tw ,U) in the model of a thermionic cathode tends
zero asTw→Tc .

Figure 3 supplies a graphic illustration of the relation b
tween the slope of the current-voltage characteristic of
diffuse discharge and the local value of the quan
h ]q/]c, discussed in Sec. III: The slope of curve 1 at t
point c5c2 , which belongs to the falling section of th
current-voltage characteristic, is larger than the slope of
straight line 4, which means that]q/]c.1/h at this point;
the slope of curve 1 at the pointc5c3 , which belongs to the
growing section, is smaller than the slope of the straight l
4, which means that]q/]c,1/h at this point; the slopes o
curve 2 and the straight line 4 at the tangent point are eq
which means]q/]c51/h at the point of minimum of the
current-voltage characteristic. One can see from Fig. 4
the temperature of the cathode surface monotonically
creases with an increase of the current density, which c
forms to the general reasoning of Sec. III.

FIG. 4. Voltage drop in the near-cathode layer, temperature
the cathode surface, and wave number for the diffuse discharg
a tungsten cathode of a height of 10 mm in the atmosphe
pressure argon plasma. 1, the voltage drop; 2, the temperature o
cathode surface; 3, the wave number;B, C, and D, bifurcation
points associated with the eigenvaluesk1 , k2 , andk3 , respectively,
for the case of a cathode in the form of a circular cylinder o
radius of 2 mm;E, the point of minimum of the voltage drop.
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C. Normal voltage

One needs to solve Eq.~15! in order to find the normal
voltage. Since the sectionOA of the current-voltage charac
teristic of the diffuse discharge in Fig. 2 coincides with t
axis of voltages in the conditions of a thermionic cathod
one should setc150 in Eq.~15! while treating a thermionic
cathode. A geometrical sense of this equation may be il
trated as follows: If one considers a half strip$0<cw
<c3 , q>0% in the plane (cw ,q) ~Fig. 3!, then areas of the
half strip under the curveq5q(cw ,Un) and under the
straight lineq5cw /h are equal. This equation may be inte
preted as a condition of the coexistence of phases, one p
being a normal spot and another being a surround
discharge-free region, and may be called Maxwell’s co
struction for a normal spot on a thermionic cathode.

Calculations for a tungsten cathode of the height
10 mm in the atmospheric-pressure argon plasma giveUn
'13.56 V.

D. Bifurcation analysis

The procedure of finding bifurcation points is described
Sec. III. All bifurcation points are positioned on the fallin
sectionAE of the current-voltage characteristic of a diffus
discharge on a thermionic cathode shown in Fig. 4, as t
do in the situation depicted in Fig. 2. Before proceeding
the results of calculations, we consider a question of whe
the bifurcation points should be expected to exist in pairs
the case of a thermionic cathode, as they do in the situa
depicted in Fig. 2.

The reasoning of Sec. III that leads to the conclusion t
bifurcation points exist in pairs under the conditions of Fig
is based on the fact that the current-voltage characteristi
Fig. 2 has two extreme points~a maximum and a minimum!,
in contrast to the current-voltage characteristic of a diffu
discharge on a thermionic cathode, which has only a m
mum point. However, the presence of two extreme points
a current-voltage characteristic of a diffuse discharge is n
necessary condition for bifurcation points to exist in pai
which can be seen from the following mathematical e
ample. Consider a case when the functionq(c,U) is similar
to that shown in Fig. 3, while its asymptotic expansion
c→0 is

q~c,U !5q*
c

c*
S ln

c*
c D 21

1•••. ~16!

Here and in the followingq* is an infinitely growing func-
tion of U andc* is a fixed parameter. Substituting the fir
term of the expansion~ 16! into Eq.~5!, one gets an equation
with two roots: a trivial onecw50, which belongs to the
branch of the current-voltage characteristic of the diffuse d
charge that coincides with the axis of voltages, and a posi
root cw5c* exp(2q*h/c* ), which belongs to the falling
section of the current-voltage characteristic and tends to z
at largeU. Differentiating the first term of the expansio
~16! with respect toc and substituting the positive root, on
finds that h ]q/]c on the falling section of the current
voltage characteristic tends to unity at largeU. Thus the
current-voltage characteristic of a diffuse discharge in t
example is similar to that of the diffuse discharge on a th
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6486 PRE 58M. S. BENILOV
mionic cathode, i.e., includes a branch coinciding with
axis of voltages and a branch with a minimum; however,
quantityh ]q/]c on the falling section is nonmonotonic an
bifurcation points exist in pairs, as it is in the situation d
picted in Fig. 2.

The considered mathematical example is representa
for a glow discharge on a cold cathode: The current-volt
characteristic of a diffuse glow discharge includes a bra
coinciding with the axis of voltages and a branch with
minimum, while bifurcation points on the falling section o
the current-voltage characteristic exist in pairs@2#. As far as
a thermionic cathode is concerned, one can see from Fi
that the functionq(c,U) decreases with a decrease ofc
much faster than it is described by Eq.~16!. In order to
obtain a more adequate example, one can replace the
term on the right-hand side of the expansion~16! by the
Arrhenius function

q~c,U !5q* expS 2
c*
c D1•••. ~17!

For this example, the quantityh ]q/]c on the falling section
of the current-voltage characteristic of the diffuse discha
infinitely increases at largeU @proportionally to ln(q*h/c* )].
Thus there are no reasons to expect a nonmonotonic beh
of h]q/]c on the falling section of the current-voltage cha
acteristic and the presence of more than one bifurcation p
per eigenvalue under the conditions of a thermionic catho

The results of numerical calculations conform to this co
clusion: The quantityh]q/]c on the falling section of the
current-voltage characteristic of the diffuse discharge mo
tonically increases with an increase ofU in all the cases
considered, so multiple bifurcation points associated wit
single eigenvalue have not been detected. As an exampl
determine bifurcation points for a tungsten cathode in
form of a circular cylinder of a height of 10 mm and of
radiusR in the atmospheric-pressure argon plasma. The
sults of the calculation of the wave number are shown in F
4. The first three positive eigenvalues of the Neumann pr
lem for the two-dimensional Helmholtz equation in a circ
are ~see the Appendix!

k151.841/R, k253.054/R, k353.832/R. ~18!

Bifurcation points associated with these eigenvalues
shown in Fig. 4 forR52 mm. As it is pointed out above
only one bifurcation point was found for each eigenvalu
For clarity, the dashed lines have been added to Fig. 4
illustrate finding bifurcation points after a distribution of th
wave numbers along the current-voltage characteristick( j )
and the spectrumk,k2 , . . . have been determined.

The asymptotic behavior of multidimensional solutions
the vicinity of bifurcation points follows from the result
given in the Appendix. In particular, the distribution of th
surface temperature is

c~x,y,0;U !5cw~U1!14. 094J1S 1.841
r

RD
3cos~u1b1!AC9~U2U1!1•••, ~19!
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c~x,y,0;U !5cw~U2!15. 439J2S 3.054
r

RD
3cos~2u1b2!AC9~U2U2!1•••,

~20!

c~x,y,0;U !5cw~U3!2FC1h
]q

]U
15. 677C2J0S 3.832

r

RD G
3~U2U3!1•••, ~21!

whereUi is a value of the voltage drop that corresponds
the i th bifurcation point,r is the distance from the center o
the circle, u is the azimuthal angle,Jn(z) are the Besse
functions, b1 and b2 are arbitrary angles, and the coeffi
cientsC2 andC9 are given by Eqs.~A16! and~A40!, respec-
tively.

A two-term asymptotic expansion of the functioncw(U)
in the vicinity of the pointU5Ui can be found by means o
Eq. ~6!,

cw~U !5cw~Ui !2C1h
]q

]U
~U2Ui !1•••. ~22!

It follows that the termcw(U1) on the right-hand side of Eq
~19! as well as the termcw(U2) on the right-hand side of Eq
~20! may be replaced, in the approximation being cons
ered, bycw(U). Equation~21! can be rewritten as

c~x,y,0;U !5cw~U !25. 677C2J0S 3.832
r

RD
3~U2U3!1•••. ~23!

One can see from Eq.~19! that a one-parameter family o
3D solutions branches off at the first bifurcation point.
C9.0, the solutions exist in the rangeU>U1 , i.e., are su-
percritical. If C9,0, the solutions exist in the rangeU
<U1 , i.e., are subcritical. Perturbations described by th
solutions increase with increasing distance to the bifurca
point proportionally toAuU2U1u. The functionJ1(k1r ) in-
creases monotonically in the range 0<r<R, hence the per-
turbations of the cathode surface temperature have a poi
maximum somewhere at the ringr 5R. Thus the solutions
branching off at the first bifurcation point describe the beg
ning of the formation of a spot at the edge of the catho
Since these solutions are identical to the accuracy of a r
tion, they can be considered as a single solution with
arbitrary azimuthal position of the spot.

Similarly, 3D solutions branching off at the second bifu
cation point can be considered as a single solution descri
the beginning of the formation of a system of two spo
positioned opposite each other at the edge of the cath
with an arbitrary azimuthal orientation of the system. Th
solution is supercritical ifC9.0 and subcritical ifC9,0.

Calculations forR52 mm indicate thatC9 is positive for
both i 51 and i 52. Hence 3D solutions describing mode
with a spot at the edge and two spots at the edge are su
critical in the conditions considered.

An axially symmetric solution that branches off at th
third bifurcation point exists forU both below and above
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U3 , i.e., has both sub- and supercritical branches. Pertu
tions described by this solution grow proportionally toU
2U3 . J0(k3r ) is monotonically decreasing in the range
<r<R, hence the supercritical branch describes axisymm
ric perturbations of the cathode surface temperature wi
maximum either at the center or everywhere at the edg
the cathode~at the ringr 5R), depending on whetherC2 is
negative or positive. The subcritical branch describes per
bations with a maximum at the center ifC2.0 and at the
edge ifC2,0. Thus the axisymmetric solution branching o
at the third bifurcation point describes two physically diffe
ent modes: a mode with a spot at the center of the cath
and a mode with a ring spot at the edge.

Calculations forR52 mm indicate thatC2 is positive for
i 53. Thus the supercritical branch describes the mode wi
ring spot and the subcritical branch describes the mode
a spot at the center.

Current-voltage characteristics of the spot modes in
vicinity of a respective bifurcation point are described by E
~A42! for i 51,2 and by Eq.~A33! for i 53. One can see tha
the differencê j &2 j 1D increases proportionally toU2Ui for
i 51,2 and to (U2U3)2 for i 53. Hence the current-voltag
characteristics of modes with one or two spots at the e
branch off from the current-voltage characteristic of the d
fuse mode at a certain angle; the characteristics of the m
with a spot at the center and a ring spot at the edge have
same slope at the bifurcation point as the characteristic of
diffuse mode. Calculations forR52 mm indicate that the
quantity~14! is positive at all three bifurcation points, henc
current-voltage characteristics of the spot modes branch
into the region above the current-voltage characteristic of
diffuse mode.

The current-voltage characteristic of the diffuse discha
on a tungsten cathode of a height of 10 mm and radius
2 mm in the atmospheric-pressure argon plasma in the v
ablesI ,U is shown in Fig. 5. Sections of the curvesBB8 and
CC8 depicted by solid lines represent the asymptotic beh
ior of characteristics of the modes with one and two spot
the edge, respectively. The characteristics of the mode
spot at the center and with a ring spot at the edge are in
tinguishable in the vicinity of the bifurcation pointD from
the characteristic of the diffuse discharge, which is a con
quence of the fact that terms of the quantity~14! at the point
D nearly compensate for each other~the difference between
these terms is about 10% of their sum!.

The above analysis allows one to draw some qualita
conclusions concerning current-voltage characteristics of
spot modes outside the vicinity of bifurcation points. A tre
that can be seen in Fig. 2 is that the current-voltage cha
teristics of spot modes, once having branched off at
pointsB, C, andD, go up; the characteristicsCC8 andDD8
that branch off into the region between the growing sect
OA of the current-voltage characteristic of the diffuse mo
and the falling sectionAE remain in this region; the charac
teristic BB8 that branches off into the region between t
falling sectionAE and the growing sectionEF turns back to
AE, crosses it, and then remains in the region betweenOA
andAE.

It is expected that this trend will remain the same also
the thermionic cathode considered here. On the other h
the presence of no more than one bifurcation point per
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genvalue indicates that a solution with a spot, once hav
branched off from the 1D solution, will not rejoin the latte
In other words, the current-voltage characteristic of t
modes with spots in Fig. 5 that branch off from the lineAE
at the pointsB, C, andD will not rejoin AE, in contrast to
lines BB8, CC8, and DD8 in Fig. 2. Thus a possible sce
nario is as follows: The characteristics, after having left t
vicinity of bifurcation points, turn back to the falling sectio
EA of the current-voltage characteristic of the diffuse mod
cross it, and then go up to infinity, being positioned betwe
the sectionAE and the axis of voltages. This scenario
depicted in Fig. 5 by the dashed lines.

It is of interest to compare the above conclusions with
results of numerical calculations@13#, carried out for a tung-
sten cathode in the form of a circular cylinder in th
atmospheric-pressure argon plasma. A solution with a spo
the center of the cathode as well as that describing the
fuse mode have been found in@13# for the caseh56 mm,
R53 mm. The current-voltage characteristics of the tw
modes fit in the scenario shown in Fig. 5, which supports
qualitative considerations given above. On the other ha
the spot solution@13# does not join the solution describin
the diffuse mode, which means that the former has b
found only in a part of its existence region; the second a
symmetric spot mode discussed aboved~the one with a ring
spot! was not found. This is a manifestation of a difficul
inherent to numerical methods in problems with multiple s
lutions: If the number of solutions is unknown, one cannot
sure that solution~s! found numerically represent the who
spectrum of existing solutions.

The data in Fig. 5 have been calculated for the cath
radius of 2 mm. With an increase of the radius, the curre
voltage characteristic of the diffuse mode will shift to larg
currents while the bifurcation pointsB, C, andD will move

FIG. 5. Current-voltage characteristics of various modes of c
rent transfer to a tungsten cathode of a height of 10 mm and ra
of 2 mm in the atmospheric-pressure argon plasma.AEF, the dif-
fuse mode;BB8, the mode with a spot at the edge;CC8, the mode
with two spots at the edge;DD8, the mode with a spot at the cente
DD9, the mode with a ring spot at the edge; 1, the normal-s
mode; 2, the spot on an infinite plane cathode;E, the point of
minimum of the current-voltage characteristic of the diffuse mo
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6488 PRE 58M. S. BENILOV
closer to the point of minimumE. Characteristics of the spo
modes will tend to show the normal current density effe
i.e., will reveal a plateau atU5Un . ~The plateau is shown in
Fig. 5 by the horizontal line.! The characteristics of the mod
with a spot in the center of the cathode and the mode w
two spots at the edge will tend at high voltages closer to
current-voltage characteristic of a spot on an infinite pla
cathode.~This characteristic was calculated by means of
model @14# with the changes described in Sec. IV A and
shown in Fig. 5 by line 2; the numbers near the line des
nate values of the spot radius.! The characteristic of the
mode with a spot at the edge will tend at high voltages clo
to the current-voltage characteristic of a spot on an infin
plane cathode displaced to lower currents by a factor of

One can see from Fig. 5 that the diffuse mode is the o
one possible at high currents. It is expected that the diff
mode at constant current is unstable on a falling section
the current-voltage characteristic beyond the first bifurcat
point, i.e., on the sectionBB8 in Fig. 2 and on the section
BA in Fig. 5. Hence a discharge that burns initially in t
diffuse mode will switch to a spot mode when the current h
been decreased down to the valueI B corresponding to the
point B. ~More accurately,I B is a limit below which the
diffuse discharge on a cathode with an ideally uniform s
face becomes unstable against infinitely small perturbatio
in fact, the switching may occur at somewhat higher curre
due to surface nonuniformities and/or finite perturbation!
The question of which spot mode will occur requires a c
culation of spot modes beyond the vicinity of bifurcatio
points and investigation of their stability; an occurrence
the first mode~the mode with a spot at the edge! seems
likely.

Since the diffuse mode is unstable at small currents,
discharge at small currents can burn only in a spot mo
With an increase of current, a switching to the diffuse mo
occurs. The question of a current value at which this happ
is a question of stability. It seems likely, however, that s
bility will be lost at maximum currents attainable in the sp
mode, i.e., in the vicinity of the turning point~point K in Fig.
5!. Since the respective current exceedsI B , the transition
between the modes is accompanied by hysteresis. This
sition is schematically illustrated in Fig. 6. Thus the pres
theory predicts, in agreement with the experiment~see, e.g.,
@4#!, a spot mode at low currents and the diffuse mode
high currents, with a transition accompanied by hysteres

According to the theory, the transition from the diffus
mode to the spot mode is accompanied in the abo
described conditions by an increase of the voltage drop in
near-cathode layer. In other conditions, this transition m
be accompanied by a decrease of the voltage drop. The l
applies, for example, to the caseR52 mm, h525 mm, in
which the current-voltage characteristic of the first sp
mode branches off into the region below the current-volta
characteristic of the diffuse discharge and to the right of
line I 5I B . It is of interest to note in this connection that th
arc voltage in the transition from the diffuse mode to the s
mode in most cases increases by a few volts~see, e.g.,@18#
nd also other references cited in@5#!. The arc voltage may be
divided into a near-anode voltage drop, an arc column v
age, a voltage drop in the near-cathode expansion zone
the voltage drop in the near-cathode layer. It is natura
t,
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assume that the near-anode voltage drop and the arc co
voltage are not affected by the change of a mode of cur
transfer at the cathode. If the voltage drop in the ne
cathode expansion zone can be neglected, one will arriv
the conclusion that an increase of the arc voltage amoun
an increase of the voltage drop in the near-cathode layer.
not clear, however, whether the voltage drop in the ne
cathode layer can in fact be neglected: An order-
magnitude estimate of this voltage drop may be obtained
multiplying the electric field in the arc column by the radiu
of the column; if one assumes the value of 103 V/m for the
former and 1 mm for the latter the product will be 1 V
which is not really much smaller than the changes of the
voltage measured. Thus the question of validity of the ab
reasoning requires further elaboration.

As it was pointed out above, the transition from the d
fuse mode to the spot mode may be expected to occur in
framework of the present model at pointB, i.e., at such a
value j B of the current density that the respective wave nu
ber k( j B) equalsk151.841/R. It is of interest to investigate
the effect of control parameters onj B and on the respective
transition currentI B and to compare the information obtaine
with that given by the experiment.

The control parameters of the present model are the c
ode radius, the cathode height, the cathode material,
plasma pressure, and species of the plasma-producing
The effect of the cathode radius can be seen from Fig. 4j B
decreases with an increase ofk1 , i.e., with a decrease of th
cathode radius.I B decreases even more strongly. It follow
that a reduction of the front area of the cathode results i
decrease of the transition current, in accord with the exp
ment @5#.

The effect of other control parameters is illustrated in F
7, in which solid lines represent dependencesk( j ) calculated
for different conditions. Curve 1 has been calculated for

FIG. 6. Schematic of the transition between the diffuse mo
and the mode with a spot at the edge on a tungsten cathode
height of 10 mm and radius of 2 mm in the atmospheric-press
argon plasma.ABF, the diffuse mode;B8KB, the mode with a spot
at the edge; solid lines, sections of the current-voltage charact
tics corresponding to stable states; dashed lines, sections c
sponding to unstable states.
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same variant as above and represents the same data th
shown in Fig. 4; all other variants differ from the that me
tioned above by one of the parameters. Cathode mate
have been chosen in order to illustrate separately the eff
of the thermal conductivity and the work function, which a
the parameters characterizing the cathode substance in
model@14#: Zirconium has an essentially lower thermal co
ductivity than tungsten and nearly the same work functi
while thoriated tungsten has the same thermal conducti
and an essentially lower work function than~pure! tungsten.
For convenience, the respective temperatures of the cat
surface and current-voltage characteristics are also prese
~the dashed lines in Fig. 7 and the lines in Fig. 8!. Note that

FIG. 7. Wave number~solid lines! and temperature of the cath
ode surface~dashed lines! for the diffuse discharge. 1, tungste
cathode of heighth510 mm in Ar plasma of pressurep51 atm ;
2, h540 mm; 3, zirconium cathode; 4, thoriated-tungsten catho
5, p55 atm; 6, Hg plasma.

FIG. 8. Current-voltage characteristics of the near-cathode la
with a diffuse mode of current transfer. The parameters of
curves are the same as those in Fig. 7.
are

ls
cts

the
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the dashed lines 1 and 5 in Fig. 7 coincide, as well as line
and 3 in Fig. 8.

A comparison of variants 1 and 2 shows that a catho
design with an increased heat resistance results in a dec
of j B , which conforms to the experiment@5#. A decrease of
the thermal conductivity of the cathode material~variants 1
and 3! also results in a decrease ofj B , which again conforms
to the experiment@5#. A decrease of the work function of th
cathode material~variants 1 and 4! results in a small~up to
40%! increase ofj B for wide cathodes~of a radius exceeding
approximately 2 mm) and a decrease ofj B for cathodes not
too wide, the latter conclusion being in agreement with
experiment@19#. An increase of the argon pressure~variants
1 and 5! results in an increase ofj B . A substitution of an
inert gas by mercury~variants 1 and 6! results in a small~up
to 20%! decrease ofj B for wide cathodes~of a radius ex-
ceeding approximately 3 mm) and in an increase ofj B for
cathodes not too wide, the latter conclusion being in agr
ment with the experiment@4#.

One can conclude that, although a quantitative comp
son of theoretical values of the transition current with ava
able experimental data is not possible due to the ideali
geometry of the cathode assumed in this work, a qualita
agreement is present.

V. CONCLUDING REMARKS

The equation of heat conduction has been considere
the body of a thermionic cathode in the form of a right cy
inder. Bifurcation analysis shows that this equation, ap
from a 1D solution describing a diffuse mode of curre
transfer to the cathode, has also multidimensional soluti
describing various spot modes. Since these solutions h
been obtained with the use of a single-valued funct
q(T,U), it follows that the nonuniqueness of the multid
mensional thermal balance of a finite sample heated b
nonlinear external energy flux may be the reason for
existence of multiple modes of current transfer to thermio
cathodes, in addition to or instead of the nonuniquenes
possible states of a plasma in the near-cathode layer f
given cathode surface temperature and a given voltage
in the near-cathode layer.

One bifurcation point per eigenvalue has been found
contrast to the case of a cold glow cathode when two bif
cation points are associated with an eigenvalue. It is of
terest to emphasize that this contrast appears in spite o
similarity of the current-voltage characteristics of the diffu
mode, which in both cases includes a branch coinciding w
the axis of voltages and a branch with a minimum. The pr
ence of only one bifurcation point per eigenvalue indica
that a solution with a spot, once having branched off in t
point from a 1D solution describing the diffuse mode, w
not rejoin the latter. Qualitative conclusions have been dra
on current-voltage characteristics of modes with spots.

The results obtained qualitatively agree with available
perimental information, thus supporting the hypothesis t
the multiplicity of modes of current transfer to hot arc cat
odes is related to the nonuniqueness of the multidimensio
thermal balance of a cathode.
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APPENDIX: BIFURCATION THEORY

Bifurcation analysis of the problem~1! and~2! is given in
@1# for the case of nondegenerate eigenvalues. In this ap
dix results are presented for eigenvalues of arbitrary deg
of degeneracy, which are needed, for example, to treat in
bifurcation points for a circular cylinder. Formulas are d
rived for current-voltage characteristics described by mu
dimensional solutions in the vicinity of bifurcation point
An application of the results obtained to the particular c
of a circular cylinder is considered.

Suppose thatU5Ui is a bifurcation point and designat
by c0(z) a respective 1D solution. We seek a solution in t
vicinity of this point in the form of a series

c~x,y,z;U !5c0~z!1«c1~x,y,z!1
«2

2
c2~x,y,z!

1
«3

6
c3~x,y,z!1•••, ~A1!

where« is a small parameter related toU2Ui . In order to
incorporate cases of perturbations growing in the vicinity
the bifurcation point proportionally toU2Ui or AuU2Ui u,
we write

U5Ui1«a11
«2

2
a2 ~A2!

and will choose at a later stage eithera151 anda250 or
a150 anda2 equal to 1 or21, as it will be appropriate.

Problems governing the functionsc1 ,c2 ,c3 may be de-
rived by differentiating Eqs.~1! and ~2! with respect to«
once, twice, and three times, respectively, and setting«
50:

¹2cp50, ~A3!

2
]cp

]z
2

]q

]c
cp5Fp for z50,

cp50 for z5h, ~A4!

]cp

]n
50 for G,

where the indexp runs through values 1,2,3 and

F15
]q

]U
a1 , ~A5!
ir

n-
ee
al
-
i-

e

e

f

F25
]2q

]c2
c1

212
]2q

]c ]U
c1a11

]2q

]U2
a1

21
]q

]U
a2 , ~A6!

F35
]3q

]c3
c1

313
]3q

]c2]U
c1

2a113
]3q

]c ]U2
c1a1

21
]3q

]U3
a1

3

13
]2q

]c2
c1c213

]2q

]c ]U
~c1a21c2a1!13

]2q

]U2
a1a2 .

~A7!

Here and below all the derivatives of the functionq are taken
at c5c(Ui), U5Ui , and the functionsc1 and c2 on the
right-hand sides of Eqs.~A6! and ~A7! are evaluated atz
50.

Since a bifurcation occurs in the point considered,
problems ~A3! and ~A4! must have nonunique solutions
The respective homogeneous problem@which is obtained by
dropping Fp on the right-hand side of the first bounda
condition ~A4!# must have a nontrivial solution. In othe
words, one should consider the homogeneous problem a
eigenvalue one, the role of the eigenvalue parameter b
played by the quantity]q/]c, which is the only control
parameter of the homogeneous problem for a given ge
etry.

Separating the variablez from x andy, one finds that the
eigenvalues and the respective eigenfunctions of the ho
geneous problem are related by the formulas

]q

]c
5kicothkih, f5F~x,y! sinhki~h2z! ~A8!

to the eigenvalueski and the eigenfunctionsF of the Neu-
mann problem for the two-dimensional Helmholtz equatio

]2F

]x2
1

]2F

]y2
1ki

2F50 for G,

]F

]n
50 for g, ~A9!

whereG is the cross section of the cylinder,g is the bound-
ary of the regionG, andn is a direction locally orthogonal to
g. It is known @20# that all eigenvalues of the problem~A9!
are real and of finite degeneracy; a set of eigenvalue
countable and may be numbered in order of their increa
the eigenvalues growing unlimitedly with the increase of t
number. We denote the set of eigenvalues numbered in o
of their increase byk0 ,k1 ,k2 , . . . . Let Ni ( i 50,1,2, . . . )
be a degeneracy of thei th eigenvalue and F im
5F im(x,y) ( i 50,1,2, . . . ; m51, . . . ,Ni) be the orthonor-
mal set of eigenfunctions (^F imF jk&5d i j dmk , where the an-
gular brackets designate averaging inx andy over the cross
section of the cylinder!. The second index will be dropped i
the case of functions associated with nondegenerate ei
values. Note thatk050, N051, F051, ki.0, and ^F im&
50 for i>1.

Multidimensional solutions branch off at bifurcatio
points associated with nontrivialki . Thus we assume thati
>1 in Eqs.~A8!.
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The inhomogeneous problems~A3! and~A4! are solvable
provided that the inhomogeneous terms are orthogonal to
nontrivial solutions of the homogeneous problem

^FpF im&50 ~A10!

for each m51, . . . ,Ni and p51,2,3. A solution may be
found by means of expansion in eigenfunctions of the hom
geneous problem and reads

cp52C1^Fp&~h2z!1sinhki~h2z! (
m51

Ni

Am
~p!F im

1(
l 51
lÞ i

`

(
m51

Nl ^F lmFp&
klcoshklh2kicothkih sinhklh

3sinhkl~h2z! F lm , ~A11!

whereAm
(p) are arbitrary constants and

C15~kih cothkih21!21. ~A12!

It can be seen from Eq.~A11! that

^cp~x,y,0!&52C1^Fp&h. ~A13!

For p51, the solvability condition~A10! is obviously satis-
fied ~note thatF15const). The terms of the double sum o
the right-hand side of Eq.~A11! vanish and one gets

c152C1

]q

]U
a1~h2z!1sinhki~h2z! (

m51

Ni

Am
~1!F im .

~A14!

Analysis of the first approximation has been complet
however, coefficientsAm

(1) remain indeterminate. The solv
ability condition of the equation of the second approximat
should be considered in order to find these coefficients.
function F2 may be found by substitution of Eq.~A14! into
the right-hand side of Eq.~A6!

F25
]2q

]c2S C1h
]q

]U
a1D 2

22C1h
]2q

]c ]U

]q

]U
a1

21
]2q

]U2
a1

2

1
]q

]U
a212 sinhkih C2

]2q

]c2
a1 (

m51

Ni

Am
~1!F im

1sinh2kih
]2q

]c2 (m51

Ni

(
n51

Ni

Am
~1!An

~1!F imF in , ~A15!

where

C25
]2q

]c ]US ]2q

]c2D 21

2C1h
]q

]U
. ~A16!

Substituting Eq.~A15! into Eq. ~A10! for p52, one arrives
at the following system of algebraic equations for coe
cientsAm

(1) :
he

-

;

e

-

2C2a1

sinhkih
Av

~1!1(
j 51

Ni

(
m51

Ni

^F i j F imF iv&Aj
~1!Am

~1!50,

~A17!

wherev51, . . . ,Ni .
In a general case, the system of equations~A17! has a

trivial solution Am
(1)50, which corresponds to the 1D solu

tion of the original problem~1! and~2!, and solution~s! pro-
portional toa1 , which correspond to multidimensional solu
tion~s! branching off from the 1D solution. One can seta1
51 anda250 in this case, thus«5U2Ui . Perturbations
branching off at the considered bifurcation point grow pr
portionally toU2Ui .

Consider now a special case of a bifurcation point
which ^F i j F imF iv&50 for all j ,m,v from 1 to Ni . In such
a case, one should seta150 in order that Eq.~A17! allow
nontrivial Am

(1) . Thus the condition of solvability of the
equation of the second approximation does not allow one
determineAm

(1) and one should consider the condition
solvability of the equation of the third approximation.

The functionc2 may be found by substituting Eq.~A15!
into the right-hand side of Eq.~A11! for p52

c252C1S ]q

]U
a21sinh2kih

]2q

]c2 (m51

Ni

Am
~1!2D ~h2z!

1sinhki~h2z! (
m51

Ni

Am
~2!F im1sinh2kih

]2q

]c2

3(
l 51
lÞ i

`

(
m51

Nl (
j 51

Ni

(
n51

Ni

Aj
~1!An

~1!^F i j F inF lm&

klcoshklh2kicothkih sinhklh

3sinhkl~h2z! F lm . ~A18!

Using this expression for evaluation ofF3 and substituting
the result into the right-hand side of Eq.~A10! for p53, one
obtains the following system of algebraic equations for c
efficientsAm

(1) :

3C2a2

sinh2kih
Av

~1!1(
j 51

Ni

(
m51

Ni

(
n51

Ni F ]3q

]c3S ]2q

]c2D 21

^F i j F imF inF iv&

13h
]2q

]c2
BjmnvGAj

~1!Am
~1!An

~1!50, ~A19!

wherev51, . . . ,Ni and

Bjmnv52C1d jmdnv1(
l 51
lÞ i

` (
u51

Nl

^F i j F imF lu&^F inF ivF lu&

klh cothklh2kih cothkih
.

~A20!

In a general case, the system of equations~A19! has a
trivial solution, which corresponds to the 1D solution of th
original problem, and solution~s! proportional to Aua2u,
which correspond to multidimensional solution~s! branching
off from the 1D solution. Sincea150, one can seta2 equal
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to 1 or 21 in this case, thus«5A2uU2Ui u. Perturbations
branching off in the considered bifurcation point grow pr
portionally toAuU2Ui u. For Ni51, the above formulas co
incide with respective formulas@1# providedT in the formu-
las @1# is replaced byc, Q by qh, y by 12z/h, z by y, and
k by kh.

The coefficientsAm
(1) provide, to a first approximation,

complete description of multidimensional solution~s! in the
vicinity of the bifurcation point. In particular, one can calc
late the current-voltage characteristics described by these
lutions. Expanding the average current density at the cath
surface in the vicinity of a bifurcation point, one gets

^ j &5 j 01
] j

]cS «^c1&1
«2

2
^c2& D1

] j

]US «a11
«2

2
a2D

1
«2

2

]2 j

]c2
^c1

2&1«2
]2 j

]c ]U
^c1&a11

«2

2

]2 j

]U2
a1

21•••,

~A21!

where j 05 j @c(Ui),Ui # and all the derivatives of the func
tion j 5 j (c,U) are taken atc5c(Ui), U5Ui . Using Eq.
~A13! for p52 and Eqs.~A6! and ~A14!, one finds

^ j &5 j 1D1
«2

2 S ]2 j

]c2
2C1h

] j

]c

]2q

]c2D sinh2kih (
m51

Ni

Am
~1!21•••.

~A22!

Here

j 1D5 j 01C3a1«1S C4a1
21

1

2
C3a2D «21•••, ~A23!

where

C35
] j

]U
2C1h

] j

]c

]q

]U
, ~A24!

C45
1

2

]2 j

]U2
2C1h

]2 j

]c]U

]q

]U
2

C1h

2

] j

]c

]2q

]U2

1~C1h!2
] j

]c

]2q

]c]U

]q

]U
1

~C1h!2

2

]2 j

]c2S ]q

]U D 2

2
~C1h!3

2

] j

]c

]2q

]c2S ]q

]U D 2

. ~A25!

Obviously, j 1D5 j 1D(U) has the meaning of the curren
voltage characteristic described by the 1D solution. To
accuracy to which Eq.~A23! was derived, it can be rewritte
as

j 1D5 j 01C3~U2Ui !1C4~U2Ui !
21•••. ~A26!

In the first case considered above, when«5U2Ui , the
three terms on the right-hand side of Eq.~A26! must be
retained. In the second case, when«5A2uU2Ui u, the order
of magnitude of terms dropped on the right-hand side of
~A22! is o(uU2Ui u), therefore the third term on the righ
hand side of Eq.~A26! may be dropped as well.
so-
de

e

.

As an example, we apply the above theory to the c
when the cathode is in the form of a circular cylinder, i.
when G is a circle. The spectrum of the problem~A9! is
given by the formula

knsR5 j n,s8 , ~A27!

where n50,1,2, . . . , s51,2,3, . . . , R is the radius of the
cylinder, and j n,s8 is the sth zero of the derivative of the
Bessel function of the first kind of ordern ~according to the
conventional nomenclature@21#, j 0,18 50 and j n,18 .0 for n
>1). Suppose that the eigenvalues are numbered in orde
their increase:

k05k0150, k15k115
j 1,18

R
, k25k215

j 2,18

R
,

k35k025
j 0,28

R
, . . . , ~A28!

where j 1,18 '1.841, j 2,18 '3.054, andj 0,28 '3.832@21#.
Eigenvalueskns with n50 are simple; those withn>1

are doubly degenerated. Orthonormalized eigenfunctions
sociated with the eigenvalues withn50 and to those with
n>1 are given by the formulas

F i5
1

J0~ j 0,s8 !
J0~k0sr ! ~A29!

and

F i1

F i2
J 5A 2

j n,s82 2n2

j n,s8

Jn~ j n,s8 !
Jn~knsr !3H cosnu

sinnu
,

~A30!

respectively, wherer is the distance from the axis of th
cylinder, u is the azimuthal angle, andJn(x) is the Bessel
function of the first kind of ordern.

Consider first a bifurcation point associated with one
the ~positive simple! eigenvalues withn50, s52,3,4, . . . .

FIG. 9. CoefficientC10.
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The system~A17! is reduced to one equation for the on
unknown coefficientA1

(1) . This equation has a nontrivial roo

A1
~1!5

C2C5

sinhkih
, ~A31!

where the numerical coefficientC5522/̂ F i
3& is given by

the formula

C552J0
3~ j 0,s8 ! F E

0

1

x J0
3~ j 0,s8 x! dxG21

. ~A32!

Note that fori 53 (s52), C552. 287. The asymptotic be
havior of the current-voltage characteristic of an axially sy
metric solution that branches off at the considered point m
be found from Eq.~A22!:

^ j &5 j 1D1
C5

2

2 S ]2 j

]c2
2C1h

] j

]c

]2q

]c2D C2
2~U2Ui !

21•••.

~A33!

Consider now a bifurcation point associated with one
the ~doubly degenerate! eigenvalues with n>1. Since
rg
-
y

f

^F i j F imF iv&50 for j ,m,v51 or 2, one has to employ Eq
~A19!. To this end, the quantitieŝF i j F imF inF iv& and
Bjmnv should be calculated. One finds

^F i j F imF inF iv&5~d jmdnv1d jndmv1d j vdmn!C6 ,
~A34!

where

C65
j n,s84

~ j n,s82 2n2!2Jn
4~ j n,s8 !

E
0

1

x Jn
4~ j n,s8 x! dx. ~A35!

Note that the numerical coefficientC6 for i 51 (n51, s
51) andi 52 (n52, s51) equals 0. 5840 and 0. 6842, re
spectively.

Calculation of the quantityBjmnv gives

Bjmnv5F2C11
R

h
~C72C8!Gd jmdnv1C8

R

h
~d jndmv

1d j vdmn!, ~A36!

where
C75
4 j n,s84

~ j n,s82 2n2!2Jn
4~ j n,s8 !

(
t52

` F E
0

1

x Jn
2~ j n,s8 x!J0~ j 0,t8 x!dxG2

J0
2~ j 0,t8 !F j 0,t8 cothS j 0,t8

h

RD2 j n,s8 cothS j n,s8
h

RD G . ~A37!

C85
2 j n,s84

~ j n,s82 2n2!2Jn
4~ j n,s8 !

(
t51

` F j 2n,t8 E
0

1

x Jn
2~ j n,s8 x!J2n~ j 2n,t8 x!dxG2

~ j 2n,t82 24n2!J2n
2 ~ j 2n,t8 !F j 2n,t8 cothS j 2n,t8

h

RD2 j n,s8 cothS j n,s8
h

RD G . ~A38!
lu-
id-
his
the
Substituting Eqs.~A34! and ~A36! into Eq. ~A19!, one ob-
tains

Av
~1!F2

C9a2

sinh2kih
1 (

m51

2

Am
~1!2G50. ~A39!

Herev51,2 and

C95S C1h
]2q

]c2

]q

]U
2

]2q

]c ]U D FC6

]3q

]c3
1~C10R2C1h!

3S ]2q

]c2D 2G21

. ~A40!

The quantityC105C71C8 introduced here is a function
of h/R and is shown in Fig. 9 fori 51 andi 52. The dashed
lines represent asymptotic values of this function for la
h/R, which are equal to 0.5659 fori 51 and 0.7536 fori
52. One can see that the dependence ofC10 on h/R in the
rangeh>R is in fact rather weak~the variation ofC10 does
e

not exceed 7% fori 51 and 1% fori 52). The asymptotic
values given above are attained ath/R*2.8 for i 51 and
h/R*1.8 for i 52.

For a nontrivial solution, the system~A39! is reduced to
one equation, which gives

(
m51

2

Am
~1!25

C9a2

sinh2kih
. ~A41!

Obviously, one must choosea251 if C9.0 anda2521 if
C9,0.

Thus we have been able to determine the sumA1
(1)2

1A2
(1)2, while the coefficientsA1

(1) and A2
(1) separately re-

main indeterminate. This means that a continuum of so
tions of a given amplitude branches off in the point cons
ered. A current-voltage characteristic of any solution of t
continuum is the same and is described in the vicinity of
bifurcation point by the formula

^ j &5 j 1D1S ]2 j

]c2
2C1h

] j

]c

]2q

]c2D C9~U2Ui !1•••.

~A42!
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